-
Notifications
You must be signed in to change notification settings - Fork 222
Feature/add t bool test #628
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
winne42
wants to merge
5
commits into
tensorflow:master
Choose a base branch
from
winne42:feature/add-TBoolTest
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
56c41de
add TBoolTest (mix of TStringTest and NumericTypesTestBase)
winfriedgerlach 0e67a8b
minor cleanup
winfriedgerlach 7141c8c
add copyright comment, fix comment in test
winfriedgerlach b87bfb2
make class and test methods public to be aligned with other tests
winfriedgerlach 3b2c7fa
fix formatting with mvn spotless:apply
winfriedgerlach File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
156 changes: 156 additions & 0 deletions
156
tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TBoolTest.java
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,156 @@ | ||
| /* | ||
| * Copyright 2020 The TensorFlow Authors. All Rights Reserved. | ||
| * | ||
| * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| * you may not use this file except in compliance with the License. | ||
| * You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| * ======================================================================= | ||
| */ | ||
|
|
||
| package org.tensorflow.types; | ||
|
|
||
| import static org.junit.jupiter.api.Assertions.assertEquals; | ||
| import static org.junit.jupiter.api.Assertions.assertNotNull; | ||
|
|
||
| import org.junit.jupiter.api.Test; | ||
| import org.tensorflow.EagerSession; | ||
| import org.tensorflow.ndarray.NdArray; | ||
| import org.tensorflow.ndarray.NdArrays; | ||
| import org.tensorflow.ndarray.Shape; | ||
| import org.tensorflow.ndarray.index.Indices; | ||
| import org.tensorflow.op.Ops; | ||
| import org.tensorflow.op.core.Constant; | ||
| import org.tensorflow.op.math.LogicalAnd; | ||
| import org.tensorflow.op.math.LogicalNot; | ||
| import org.tensorflow.op.math.LogicalOr; | ||
|
|
||
| public class TBoolTest { | ||
|
|
||
| @Test | ||
| public void createScalar() { | ||
| TBool tensorT = TBool.scalarOf(true); | ||
| assertNotNull(tensorT); | ||
| assertEquals(Shape.scalar(), tensorT.shape()); | ||
| assertEquals(true, tensorT.getObject()); | ||
|
|
||
| TBool tensorF = TBool.scalarOf(false); | ||
| assertNotNull(tensorF); | ||
| assertEquals(Shape.scalar(), tensorF.shape()); | ||
| assertEquals(false, tensorF.getObject()); | ||
| } | ||
|
|
||
| @Test | ||
| public void createVector() { | ||
| TBool tensor = TBool.vectorOf(true, false); | ||
| assertNotNull(tensor); | ||
| assertEquals(Shape.of(2), tensor.shape()); | ||
| assertEquals(true, tensor.getObject(0)); | ||
| assertEquals(false, tensor.getObject(1)); | ||
| } | ||
|
|
||
| @Test | ||
| public void createCopy() { | ||
| NdArray<Boolean> bools = | ||
| NdArrays.ofObjects(Boolean.class, Shape.of(2, 2)) | ||
| .setObject(true, 0, 0) | ||
| .setObject(false, 0, 1) | ||
| .setObject(false, 1, 0) | ||
| .setObject(true, 1, 1); | ||
|
|
||
| TBool tensor = TBool.tensorOf(bools); | ||
| assertNotNull(tensor); | ||
| bools.scalars().forEachIndexed((idx, s) -> assertEquals(s.getObject(), tensor.getObject(idx))); | ||
| } | ||
|
|
||
| @Test | ||
| public void initializeTensorsWithBools() { | ||
| // Allocate a tensor of booleans of the shape (2, 3, 2) | ||
| TBool tensor = TBool.tensorOf(Shape.of(2, 3, 2)); | ||
|
|
||
| assertEquals(3, tensor.rank()); | ||
| assertEquals(12, tensor.size()); | ||
| NdArray<Boolean> data = (NdArray<Boolean>) tensor; | ||
|
|
||
| try (EagerSession session = EagerSession.create()) { | ||
| Ops tf = Ops.create(session); | ||
|
|
||
| // Initialize tensor memory with falses and take a snapshot | ||
| data.scalars().forEach(scalar -> ((NdArray<Boolean>) scalar).setObject(false)); | ||
| Constant<TBool> x = tf.constantOf(tensor); | ||
|
|
||
| // Initialize the same tensor memory with trues and take a snapshot | ||
| data.scalars().forEach(scalar -> ((NdArray<Boolean>) scalar).setObject(true)); | ||
| Constant<TBool> y = tf.constantOf(tensor); | ||
|
|
||
| // Calculate x AND y and validate the result | ||
| LogicalAnd xAndY = tf.math.logicalAnd(x, y); | ||
| ((NdArray<Boolean>) xAndY.asTensor()) | ||
| .scalars() | ||
| .forEach(scalar -> assertEquals(false, scalar.getObject())); | ||
|
|
||
| // Calculate x OR y and validate the result | ||
| LogicalOr xOrY = tf.math.logicalOr(x, y); | ||
| ((NdArray<Boolean>) xOrY.asTensor()) | ||
| .scalars() | ||
| .forEach(scalar -> assertEquals(true, scalar.getObject())); | ||
|
|
||
| // Calculate !x and validate the result against y | ||
| LogicalNot notX = tf.math.logicalNot(x); | ||
| assertEquals(y.asTensor(), notX.asTensor()); | ||
| } | ||
| } | ||
|
|
||
| @Test | ||
| public void setAndCompute() { | ||
| NdArray<Boolean> heapData = | ||
| NdArrays.ofBooleans(Shape.of(4)) | ||
| .setObject(true, 0) | ||
| .setObject(false, 1) | ||
| .setObject(true, 2) | ||
| .setObject(false, 3); | ||
|
|
||
| // Creates a 2x2 matrix | ||
| try (TBool tensor = TBool.tensorOf(Shape.of(2, 2))) { | ||
| NdArray<Boolean> data = (NdArray<Boolean>) tensor; | ||
|
|
||
| // Copy first 2 values of the vector to the first row of the matrix | ||
| data.set(heapData.slice(Indices.range(0, 2)), 0); | ||
|
|
||
| // Copy values at an odd position in the vector as the second row of the matrix | ||
| data.set(heapData.slice(Indices.odd()), 1); | ||
|
|
||
| assertEquals(true, data.getObject(0, 0)); | ||
| assertEquals(false, data.getObject(0, 1)); | ||
| assertEquals(false, data.getObject(1, 0)); | ||
| assertEquals(false, data.getObject(1, 1)); | ||
|
|
||
| // Read rows of the tensor in reverse order | ||
| NdArray<Boolean> flippedData = data.slice(Indices.flip(), Indices.flip()); | ||
|
|
||
| assertEquals(false, flippedData.getObject(0, 0)); | ||
| assertEquals(false, flippedData.getObject(0, 1)); | ||
| assertEquals(false, flippedData.getObject(1, 0)); | ||
| assertEquals(true, flippedData.getObject(1, 1)); | ||
|
|
||
| try (EagerSession session = EagerSession.create()) { | ||
| Ops tf = Ops.create(session); | ||
|
|
||
| LogicalNot sub = tf.math.logicalNot(tf.constantOf(tensor)); | ||
| NdArray<Boolean> result = (NdArray<Boolean>) sub.asTensor(); | ||
|
|
||
| assertEquals(false, result.getObject(0, 0)); | ||
| assertEquals(true, result.getObject(0, 1)); | ||
| assertEquals(true, result.getObject(1, 0)); | ||
| assertEquals(true, result.getObject(1, 1)); | ||
| } | ||
| } | ||
| } | ||
| } | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please add the same copyright statement as the other tests.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
oops, added