Battle-tested InterSystems IRIS infrastructure utilities for Python development
IRIS DevTools is a comprehensive Python package that provides automatic, reliable, production-tested infrastructure for InterSystems IRIS development. Born from years of production experience and hundreds of hours debugging IRIS + Docker + Python integration issues, this library codifies all the hard-won lessons into a reusable package.
Ever experienced these?
- ❌ "Password change required" errors breaking your tests
- ❌ Port conflicts when running tests in parallel
- ❌ Tests polluting each other's data
- ❌ "Works on my machine" but fails in CI
- ❌ Spending hours debugging IRIS connection issues
- ❌ Copying infrastructure code between projects
IRIS DevTools fixes all of these automatically.
Step 1: Install Docker
# macOS: Install Docker Desktop
# Download from https://www.docker.com/products/docker-desktop
# Verify installation
docker --version
docker ps # Should show empty list, not an errorStep 2: Install iris-devtester
# Recommended: Install with all features
pip install iris-devtester[all]
# This includes:
# - testcontainers (container management)
# - DBAPI support (3x faster connections)
# - All optional featuresStep 3: Write Your First Test
# test_example.py
from iris_devtester.containers import IRISContainer
def test_basic_connection():
"""Your first IRIS test - that's all you need!"""
with IRISContainer.community() as iris:
conn = iris.get_connection()
cursor = conn.cursor()
cursor.execute("SELECT 1 AS result")
assert cursor.fetchone()[0] == 1Step 4: Run It
pytest test_example.py -v
# First run takes ~30 seconds (downloads IRIS image)
# Subsequent runs take ~5-10 secondsThat's it! You now have a fully isolated IRIS database for testing.
Startup Time: On macOS with Docker Desktop, IRIS containers need 10-15 seconds for full initialization. This is normal - Docker Desktop runs in a VM which adds overhead.
What You'll See:
Starting IRIS container...
Waiting for IRIS to be ready... # Takes 10-15s on macOS
✓ IRIS ready
Hardening user accounts... # Another 8-10s on macOS
✓ Password verified
Why It's Slower: macOS Docker Desktop runs containers in a VM, which adds latency to:
- Security metadata propagation (~8-10s)
- Volume mounts
- Network initialization
Tip: For development, use iris-devtester container up to start a persistent container once, then attach to it:
# Start once (takes 30s)
# $ iris-devtester container up
# Then attach in your code (instant)
from iris_devtester.containers import IRISContainer
iris = IRISContainer.attach("iris_container")
conn = iris.get_connection()Faster Startup: Native Docker on Linux is 2-3x faster than macOS Docker Desktop. Expect:
- Container startup: 3-5 seconds
- Password verification: <2 seconds
Permissions: Add your user to the docker group to avoid sudo:
sudo usermod -aG docker $USER
# Log out and back in for changes to take effectUse WSL2: For best performance, install Docker Desktop with WSL2 backend.
Performance: Similar to macOS (10-15s startup due to VM overhead).
Symptom: You see warnings like:
⚠️ Password verification failed after 3 attempts
Is This a Problem? Usually NO! As of v1.4.7, this is just a warning during startup. If your tests pass and your code works, ignore it.
Why It Happens: macOS Docker Desktop needs 10-15s for security metadata to propagate. The verification runs before that completes.
Fix: Already fixed in v1.4.7+ (increased settle delay). Just update:
pip install --upgrade iris-devtesterSymptom:
Error: Container name already in use
Error: Bind for 0.0.0.0:1972 failed: port is already allocated
Fix:
# Remove old containers
docker ps -a | grep iris | awk '{print $1}' | xargs docker rm -f
# Or clean everything
docker system prune -aSymptom:
ERROR: Access Denied
ERROR: CallIn service not available
Root Cause: IRIS requires the CallIn service to be enabled for DBAPI connections.
Fix: get_connection() automatically enables CallIn for you. But if you're using custom code:
# This is automatic in IRISContainer.get_connection()
iris.enable_callin_service() # Required for DBAPI!
conn = get_dbapi_connection(config)Fallback: The library automatically falls back to JDBC (slower but doesn't need CallIn).
Symptom: Test A passes alone, but fails when run with Test B.
Fix: Use isolated containers per test class:
import pytest
from iris_devtester.containers import IRISContainer
@pytest.fixture(scope="function") # New container per test
def iris_db():
with IRISContainer.community() as iris:
yield iris.get_connection()
# Automatic cleanup
def test_a(iris_db):
# Isolated from test_b
pass
def test_b(iris_db):
# Gets its own fresh container
passSymptom: Each test takes 10-15 seconds.
Fix: Use scope="module" or scope="session" to share containers:
@pytest.fixture(scope="module") # One container per test file
def iris_db():
with IRISContainer.community() as iris:
yield iris.get_connection()Trade-off: Faster tests, but tests can pollute each other. Use unique namespaces for isolation:
@pytest.fixture
def test_namespace(iris_container):
"""Each test gets unique namespace in shared container."""
namespace = iris_container.get_test_namespace(prefix="TEST")
yield namespace
iris_container.delete_namespace(namespace) # Cleanup# ✅ GOOD - Automatic cleanup
with IRISContainer.community() as iris:
conn = iris.get_connection()
# Use connection
# Container automatically stopped and removed
# ❌ BAD - Manual cleanup required
iris = IRISContainer.community()
iris.start()
conn = iris.get_connection()
# Forgot to cleanup - container still running!# ✅ GOOD - Automatic password management
conn = iris.get_connection() # Handles password reset automatically
# ❌ BAD - Manual password reset
reset_password(container_name, username, password)
conn = get_dbapi_connection(config)# ✅ GOOD - 3x faster for SQL
conn = iris.get_connection() # DBAPI
cursor = conn.cursor()
cursor.execute("SELECT * FROM MyTable") # Fast!
# ✅ GOOD - Required for ObjectScript
iris_conn = iris.get_iris_connection() # iris.connect()
iris_obj = iris.createIRIS(iris_conn)
iris_obj.classMethodValue("Config.Namespaces", "Create", "TEST")
# ❌ BAD - Using iris.connect() for SQL
iris_conn = iris.get_iris_connection()
cursor = iris_conn.cursor() # Slower!# ✅ GOOD - Load 10K rows in <10 seconds
from iris_devtester.fixtures import DATFixtureLoader
loader = DATFixtureLoader(container=iris)
result = loader.load_fixture("./fixtures/test-data-10k")
# ❌ BAD - Programmatic insert takes 50+ minutes
for i in range(10000):
cursor.execute("INSERT INTO MyTable VALUES (?, ?)", (i, f"Name {i}"))# ✅ GOOD - Defensive validation
with IRISContainer.community() as iris:
# Validate before expensive operations
result = iris.validate()
if not result.success:
raise RuntimeError(result.format_message())
# Now safe to proceed with long-running task
run_benchmark(iris)# Minimal (JDBC only, slower)
pip install iris-devtester
# Recommended (DBAPI + JDBC)
pip install iris-devtester[dbapi]
# All features (recommended for new projects)
pip install iris-devtester[all]
# Development (includes test tools)
pip install iris-devtester[dev,test,all]What's Included:
[dbapi]: intersystems-irispython (3x faster connections)[jdbc]: jaydebeapi, JPype1 (fallback connector)[all]: Both DBAPI and JDBC[test]: pytest, pytest-cov, pytest-asyncio[dev]: black, isort, mypy, flake8
from iris_devtester.containers import IRISContainer
# That's it! No configuration needed.
with IRISContainer.community() as iris:
conn = iris.get_connection()
cursor = conn.cursor()
cursor.execute("SELECT $ZVERSION")
print(cursor.fetchone())# conftest.py
from iris_devtester.testing import iris_test_fixture
import pytest
@pytest.fixture(scope="module")
def iris_db():
return iris_test_fixture()
# test_example.py
def test_my_feature(iris_db):
conn, state = iris_db
cursor = conn.cursor()
cursor.execute("SELECT 1")
assert cursor.fetchone()[0] == 1Run tests:
pytest # Just works! 🎉# Use existing container (no testcontainers overhead)
from iris_devtester.containers import IRISContainer
iris = IRISContainer.attach("iris_db") # Your docker-compose service
conn = iris.get_connection()
# Use connection- Detects "Password change required" errors
- Automatically resets passwords using official IRIS API
- Uses correct ObjectScript implementation (Get/Modify pattern)
- Connection verification with exponential backoff retry
- Performance: <100ms typical verification
- Success Rate: 99.5%+ on all platforms (macOS, Linux)
- Transparent retry - your code never knows it happened
- Each test suite gets isolated IRIS instance
- Automatic cleanup (even on crashes)
- No port conflicts
- No test data pollution
- Complete CLI for IRIS container management (
container up,start,stop,remove) - Zero-config defaults work out of the box
- Persistent containers for long-running tests (benchmark infrastructure)
- Volume mounting support with read-only mode
- Automatic health checks and CallIn enablement
- Works with both Community and Enterprise editions
- Attach to existing IRIS containers without lifecycle management
- Works with licensed IRIS via docker-compose
- CLI commands for quick operations (status, enable-callin, test-connection)
- Standalone utilities for shell scripts and automation
- Auto-discovery of container ports
- Automatically uses fastest connection method
- DBAPI (Database API): 3x faster than JDBC (Java Database Connectivity)
- Falls back to JDBC if DBAPI unavailable
- All transparent to your code
- Create reproducible test fixtures from IRIS tables
- 10-100x faster than programmatic data creation
- SHA256 checksum validation for data integrity
- Load 10K rows in <10 seconds
- CLI commands for create, load, validate
- Auto-configure ^SystemPerformance monitoring
- Task Manager integration for scheduled monitoring
- Resource-aware auto-disable under high load
- Automatic re-enable when resources recover
- Zero-config monitoring setup
- Schema validation & auto-reset
- Test data isolation
- Pre-flight checks
- Medical-grade reliability (94%+ coverage)
- Sensible defaults
- Auto-discovery of IRIS instances
- Environment variable overrides
- Works with both Community & Enterprise editions
Manage IRIS containers like docker-compose, but with zero configuration:
# Start IRIS container (zero-config, uses Community edition)
iris-devtester container up
# Container persists - perfect for development or benchmarks
# Access at http://localhost:52773/csp/sys/UtilHome.csp
# Check status
iris-devtester container status
# View logs
iris-devtester container logs --follow
# Stop when done
iris-devtester container stop
# Remove completely
iris-devtester container remove# iris-config.yml
edition: community
container_name: my_iris
ports:
superserver: 1972
webserver: 52773
namespace: USER
password: SYS
volumes:
- ./data:/external/data
- ./config:/opt/config:ro # read-only# Use custom config
iris-devtester container up --config iris-config.ymlfrom iris_devtester.config import ContainerConfig
from iris_devtester.utils import IRISContainerManager
# Programmatic container management
config = ContainerConfig.from_yaml("iris-config.yml")
container = IRISContainerManager.create_from_config(config)
# Container persists for long-running operations
# Perfect for benchmark infrastructurefrom iris_devtools.containers import IRISContainer
# Auto-discovers license from ~/.iris/iris.key
with IRISContainer.enterprise(namespace="PRODUCTION") as iris:
conn = iris.get_connection()
# Use your enterprise IRIS instanceCreate reproducible test fixtures 10-100x faster than programmatic data creation:
from iris_devtools.fixtures import FixtureCreator, DATFixtureLoader
# Create fixture from existing data
creator = FixtureCreator()
manifest = creator.create_fixture(
fixture_id="test-users-100",
namespace="USER",
output_dir="./fixtures/test-users-100"
)
# Load fixture in tests (10K rows in <10 seconds)
loader = DATFixtureLoader()
result = loader.load_fixture("./fixtures/test-users-100")
print(f"Loaded {len(result.tables_loaded)} tables in {result.elapsed_seconds:.2f}s")# Create fixture
iris-devtester fixture create --name test-100 --namespace USER --output ./fixtures/test-100
# Validate integrity
iris-devtester fixture validate --fixture ./fixtures/test-100
# Load fixture
iris-devtester fixture load --fixture ./fixtures/test-100Auto-configure IRIS performance monitoring with resource-aware auto-disable:
from iris_devtools.containers.monitoring import configure_monitoring
from iris_devtools.containers import IRISContainer
with IRISContainer.community() as iris:
conn = iris.get_connection()
# Zero-config monitoring setup
success, message = configure_monitoring(conn)
print(f"Monitoring configured: {message}")
# Automatically disables monitoring if CPU > 90%
# Automatically re-enables when CPU < 85%Work with existing IRIS containers (docker-compose, licensed IRIS, external containers):
from iris_devtools.containers import IRISContainer
from iris_devtools.utils import enable_callin_service, test_connection, get_container_status
# Approach 1: Attach to existing container
iris = IRISContainer.attach("iris_db") # Your docker-compose service name
conn = iris.get_connection() # Auto-enables CallIn, discovers port
cursor = conn.cursor()
cursor.execute("SELECT $ZVERSION")
# Approach 2: Standalone utilities (shell-friendly)
success, msg = enable_callin_service("iris_db")
success, msg = test_connection("iris_db", namespace="USER")
success, report = get_container_status("iris_db")# Check container status (aggregates running, health, connection)
iris-devtester container status iris_db
# Enable CallIn service (required for DBAPI connections)
iris-devtester container enable-callin iris_db
# Test database connection
iris-devtester container test-connection iris_db --namespace USER
# Reset password if needed
iris-devtester container reset-password iris_db --user _SYSTEM --password SYS# docker-compose.yml
version: '3.8'
services:
iris_db:
image: intersystemsdc/iris:latest # Licensed IRIS
container_name: iris_db
ports:
- "1972:1972"
- "52773:52773"Then use iris-devtester with your existing container:
# No testcontainers overhead - use existing container
iris = IRISContainer.attach("iris_db")
conn = iris.get_connection()See examples/10_docker_compose_integration.py for complete examples.
Built on proven foundations:
- testcontainers-python: Industry-standard container management
- testcontainers-iris-python (caretdev): IRIS-specific extensions
- Battle-tested code: Extracted from production RAG (Retrieval-Augmented Generation) systems
This library follows 8 core principles learned through production experience:
- Automatic Remediation Over Manual Intervention - No "run this command" errors
- DBAPI First, JDBC Fallback - Always use the fastest option
- Isolation by Default - Each test gets its own database
- Zero Configuration Viable -
pip install && pytestjust works - Fail Fast with Guidance - Clear errors with fix instructions
- Enterprise Ready, Community Friendly - Both editions supported
- Medical-Grade Reliability - 95%+ test coverage, all error paths tested
- Document the Blind Alleys - Learn from our mistakes
- Troubleshooting Guide
- Codified Learnings - Our hard-won knowledge
- Examples - Runnable code samples
# .github/workflows/test.yml
- name: Run tests
run: |
pip install iris-devtester[all]
pytest # IRIS spins up automatically!# Start coding immediately - no setup!
from iris_devtools.connections import get_iris_connection
conn = get_iris_connection() # Auto-discovers or starts container
# Code your features...# Test against real enterprise features
with IRISContainer.enterprise(
license_key="/path/to/iris.key",
image="containers.intersystems.com/intersystems/iris:latest"
) as iris:
# Test mirrors, sharding, etc.Benchmarks on MacBook Pro M1:
- Container startup: ~5 seconds
- DBAPI connection: ~80ms
- JDBC connection: ~250ms
- Schema reset: <5 seconds
- Test isolation overhead: <100ms per test class
- Python 3.9+
- Docker (for testcontainers)
- InterSystems IRIS (Community or Enterprise)
This project is optimized for AI coding assistants:
- AGENTS.md - Vendor-neutral AI configuration (build commands, CI/CD)
- CLAUDE.md - Claude Code-specific context and patterns
- Comprehensive examples - All examples include expected outputs
- Structured documentation - Clear architecture, conventions, and troubleshooting
We welcome contributions! This library embodies real production experience. If you've solved an IRIS infrastructure problem, please contribute it so others don't repeat the same journey.
See CONTRIBUTING.md for guidelines.
Built on the shoulders of giants:
- caretdev/testcontainers-iris-python - IRIS testcontainers foundation
- testcontainers/testcontainers-python - Container lifecycle management
- InterSystems - IRIS database platform
Special thanks to all the developers who debugged these issues so you don't have to.
MIT License - See LICENSE
- GitHub Issues
- Documentation
- Stack Overflow (tag: intersystems-iris)
Remember: Every feature here was paid for with real debugging time. Use this library to stand on our shoulders, not repeat our mistakes. 🚀