Skip to content

imazen/butteraugli

Repository files navigation

butteraugli-oxide

Crates.io Documentation CI codecov License

Pure Rust implementation of Google's butteraugli perceptual image quality metric from libjxl.

What is Butteraugli?

Butteraugli is a psychovisual image quality metric that estimates the perceived difference between two images. Unlike simple metrics like PSNR or MSE, butteraugli models human vision to produce scores that correlate well with subjective quality assessments.

The metric is based on:

  • Opsin dynamics: Models photosensitive chemical responses in the retina
  • XYB color space: A hybrid opponent/trichromatic color representation
  • Visual masking: How image features hide or reveal differences
  • Multi-scale analysis: Examines differences at multiple frequency bands

Quality Thresholds

Score Interpretation
< 1.0 Images appear identical to most viewers
1.0 - 2.0 Subtle differences may be noticeable
> 2.0 Visible differences between images

Command-Line Tool

Install with:

cargo install butteraugli-oxide --features cli

Basic Usage

# Compare two images
butteraugli original.png compressed.jpg
# Output: Butteraugli score: 1.2345

# Show quality rating
butteraugli -q original.png compressed.jpg
# Output: Butteraugli score: 1.2345 (acceptable)
#         Quality: Noticeable but acceptable

# JSON output for scripting
butteraugli --json original.png compressed.jpg

# Save difference heatmap
butteraugli --diffmap diff.png original.png compressed.jpg

# Just the score (for scripting)
butteraugli --quiet original.png compressed.jpg
# Output: 1.234500

Advanced Options

# Custom intensity target (default: 80 nits)
butteraugli --intensity-target 250 hdr_orig.png hdr_comp.png

# High-frequency asymmetry (penalize blur vs ringing)
butteraugli --hf-asymmetry 1.5 original.png compressed.jpg

# See all options
butteraugli --help

Library Usage

Add to your Cargo.toml:

[dependencies]
butteraugli-oxide = "0.1"

Input Formats

Two input APIs are provided:

Function Input Type Color Space Use Case
compute_butteraugli &[u8] sRGB (gamma-encoded) Standard 8-bit images
compute_butteraugli_linear &[f32] Linear RGB (0.0-1.0) HDR, 16-bit, float pipelines

Both APIs require:

  • Channel order: RGB (red, green, blue)
  • Layout: Row-major, interleaved (see below)
  • Minimum size: 8×8 pixels

The sRGB function internally applies gamma decoding before comparison.

Pixel Layout

Data is row-major, interleaved RGB:

Index:  0   1   2   3   4   5   6   7   8  ...
Data:  [R0, G0, B0, R1, G1, B1, R2, G2, B2, ...]
        └─pixel 0─┘  └─pixel 1─┘  └─pixel 2─┘

For a 3×2 image:

Row 0: [R00, G00, B00, R01, G01, B01, R02, G02, B02]
Row 1: [R10, G10, B10, R11, G11, B11, R12, G12, B12]

Memory: [R00, G00, B00, R01, G01, B01, R02, G02, B02, R10, G10, B10, ...]
         └────────────── row 0 ──────────────────┘  └──── row 1 ────...

To access pixel at (x, y): index = (y * width + x) * 3

Basic Example

use butteraugli_oxide::{compute_butteraugli, ButteraugliParams};

// Load two RGB images (u8, 3 bytes per pixel, row-major order)
let original: &[u8] = &[/* original image RGB data */];
let compressed: &[u8] = &[/* compressed image RGB data */];
let width = 640;
let height = 480;

// Compare images
let params = ButteraugliParams::default();
let result = compute_butteraugli(original, compressed, width, height, &params)
    .expect("valid image data");

println!("Butteraugli score: {:.4}", result.score);

if result.score < 1.0 {
    println!("Images appear identical!");
} else if result.score < 2.0 {
    println!("Minor visible differences");
} else {
    println!("Significant visible differences");
}

// Optional: access per-pixel difference map
if let Some(diffmap) = result.diffmap {
    let max_diff = (0..height)
        .flat_map(|y| (0..width).map(move |x| diffmap.get(x, y)))
        .fold(0.0f32, f32::max);
    println!("Maximum local difference: {:.4}", max_diff);
}

Linear RGB Example (HDR/16-bit)

use butteraugli_oxide::{compute_butteraugli_linear, ButteraugliParams, srgb_to_linear};

// Convert 16-bit image to linear f32
let original_16bit: &[u16] = &[/* 16-bit RGB data */];
let original_linear: Vec<f32> = original_16bit.iter()
    .map(|&v| v as f32 / 65535.0)  // Assuming already linear
    .collect();

// Or convert 8-bit sRGB manually
let original_srgb: &[u8] = &[/* sRGB data */];
let original_linear: Vec<f32> = original_srgb.iter()
    .map(|&v| srgb_to_linear(v))
    .collect();

let result = compute_butteraugli_linear(&original_linear, &compressed_linear, width, height, &ButteraugliParams::default())
    .expect("valid image data");

Custom Parameters

use butteraugli_oxide::ButteraugliParams;

let params = ButteraugliParams::new()
    .with_hf_asymmetry(1.5)      // Penalize new artifacts more than blurring
    .with_xmul(1.0)              // X channel multiplier (1.0 = neutral)
    .with_intensity_target(250.0); // HDR display brightness in nits

Helper Functions

use butteraugli_oxide::{score_to_quality, butteraugli_fuzzy_class};

// Convert score to 0-100 quality percentage
let quality = score_to_quality(1.5);  // ~62.5%

// Get fuzzy classification (2.0 = perfect, 1.0 = ok, 0.0 = bad)
let class = butteraugli_fuzzy_class(1.5);  // ~1.25

Features

  • simd (default): Enable SIMD optimizations via the wide crate
  • cli: Build the command-line tool (adds clap, image, serde_json dependencies)

Performance

This implementation uses SIMD operations where available for gaussian blur and other compute-intensive operations. Performance is comparable to the C++ implementation for typical image sizes.

Accuracy

The implementation includes 195 synthetic test cases validated against the C++ libjxl butteraugli. Reference values are captured from C++ and hard-coded for regression testing without requiring FFI bindings at runtime.

Comparison with Other Crates

Crate Type Notes
butteraugli-oxide Pure Rust Full implementation, no C++ dependency
butteraugli FFI wrapper Wraps C++ butteraugli library
butteraugli-sys FFI bindings Low-level C++ bindings

API Comparison with C++ libjxl

Feature C++ butteraugli butteraugli-oxide
Input format Linear RGB float sRGB u8 or linear RGB f32
Bit depth Any (via float) 8-bit u8 or f32
Color space Linear RGB only sRGB (auto-converted) or linear RGB
HDR support Yes Yes (via compute_butteraugli_linear)
Channel layout Planar (separate R, G, B arrays) Interleaved (RGBRGB...)

XYB Color Space Note

Butteraugli's internal XYB is NOT the same as jpegli's XYB.

Aspect Butteraugli XYB jpegli XYB
Nonlinearity Gamma (FastLog2f-based) Cube root
Opsin matrix Different coefficients Different coefficients
Dynamic sensitivity Yes (blur-based adaptation) No
XY formula X = L - M, Y = L + M X = (L-M)/2, Y = (L+M)/2

This crate does NOT accept XYB input directly because there are multiple incompatible XYB definitions. Always provide RGB input and let butteraugli perform its own internal conversion.

References

Development

Running CI Locally

To reproduce the CI checks locally:

# Format check
cargo fmt --all -- --check

# Clippy lints
cargo clippy --lib --tests -- -D warnings

# Build
cargo build

# Run unit tests
cargo test --lib

# Run conformance tests
cargo test --test conformance

# Run reference parity tests
cargo test --test reference_parity

Test Coverage

# Install cargo-llvm-cov
cargo install cargo-llvm-cov

# Generate coverage report
cargo llvm-cov --lib --html

# Open report
open target/llvm-cov/html/index.html

AI-Generated Code Notice

This crate was developed with significant assistance from Claude (Anthropic). While the code has been tested against the C++ libjxl butteraugli implementation and passes 195 synthetic test cases with exact numerical parity, not all code has been manually reviewed or human-audited.

Before using in production:

  • Review critical code paths for your use case
  • Run your own validation against expected outputs
  • Consider the test suite coverage for your specific requirements

License

BSD-3-Clause, same as the original libjxl implementation.

About

Pure Rust implementation of Google's butteraugli perceptual image quality metric

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages