Skip to content
/ appraise Public

❗ This is a read-only mirror of the CRAN R package repository. appraise — Bias-Aware Evidence Synthesis in Systematic Reviews

Notifications You must be signed in to change notification settings

cran/appraise

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

appraise

Bias-aware evidence synthesis using posterior mixture models

Overview

appraise is an R package for bias-aware evidence synthesis in systematic reviews and health technology assessments. It implements the AppRaise framework, which explicitly models multiple sources of bias at the study level and propagates uncertainty using posterior simulation.

Rather than assuming a single pooled likelihood (as in conventional meta-analysis), appraise combines study-specific posterior distributions using posterior mixture models. This allows probabilistic inference on clinically or policy-relevant thresholds while accounting for bias, uncertainty, and variation in study relevance.

The methods are designed to support transparent decision-making when the evidence base is heterogeneous and potentially biased.

Installation

The package is currently available from GitHub and will be submitted to CRAN.

# Install from GitHub
# install.packages("remotes")
remotes::install_github("conibyera/appraise")

Once on CRAN:

install.packages("appraise")

Core functionality

The typical workflow in appraise consists of four steps:

1. Specify bias structures and prior distributions

2. Simulate bias priors

3. Fit the bias-adjusted model

4. Summarize and synthesize posterior distributions

1. Bias specification

Biases are specified by type and linked to prior distributions.

library(appraise)

bias_spec <- build_bias_specification(
  num_biases = 2,
  b_types = "Confounding",
  s_types = "Selection Bias",
  ab_params = list(Confounding = c(2, 5)),
  skn_params = list(`Selection Bias` = c(0, 0.2, 5))
)

2. Simulate bias priors

xi <- simulate_bias_priors(bias_spec, n_draws = 2000)

3. Fit the AppRaise model

fit <- run_appraise_model(
  bias_spec = bias_spec,
  yhat = -0.6,
  stdev = 0.12,
  threshold_value = -0.4
)

4. Posterior inference

Compute posterior probabilities and summaries directly from the draws.

posterior_probability(fit$mid)

posterior_summary(fit$theta)

Evidence synthesis using posterior mixtures

When multiple studies are available, posterior distributions can be combined using mixture models.

mixture <- posterior_mixture(
  theta_list = list(fit$theta, rnorm(length(fit$theta), -0.4, 0.15)),
  weights = c(0.6, 0.4)
)

mixture$summary

Shiny application

The AppRaise Shiny application provides a graphical interface to the same statistical functions implemented in this package. All computations are performed using exported package functions; the app adds interactivity, visualization, and workflow support.

The Shiny app is intended for applied analysts and decision-makers, while the package supports reproducible, script-based workflows.

Documentation

  • Package vignette:
vignette("appraise-introduction")

References

Kabali C. (2025). AppRaise: Software for quantifying evidence uncertainty in systematic reviews using a posterior mixture model. Journal of Evaluation in Clinical Practice, 31, 1-12. https://doi.org/10.1111/jep.70272

License

GPL-3

About

❗ This is a read-only mirror of the CRAN R package repository. appraise — Bias-Aware Evidence Synthesis in Systematic Reviews

Resources

Stars

Watchers

Forks

Packages

No packages published