Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
256 changes: 256 additions & 0 deletions examples/qdq_placement/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,256 @@
# QDQ Placement Optimization Example

This example demonstrates automated Q/DQ (Quantize/Dequantize) node placement optimization for ONNX models using TensorRT performance measurements.

## Prerequisites

### Get the Model

Download the ResNet50 model from the ONNX Model Zoo:

```bash
# Download ResNet50 from ONNX Model Zoo
curl -L -o resnet50_Opset17.onnx https://github.com/onnx/models/raw/main/Computer_Vision/resnet50_Opset17_torch_hub/resnet50_Opset17.onnx
```

### Set Fixed Batch Size (Recommended)

The downloaded model has a dynamic batch size. For best performance with TensorRT benchmarking, set a fixed batch size:

```bash
# Set batch size to 128 using the provided script
python3 set_batch_size.py resnet50_Opset17.onnx --batch-size 128 --output resnet50.bs128.onnx

# Or for other batch sizes
python3 set_batch_size.py resnet50_Opset17.onnx --batch-size 1 --output resnet50.bs1.onnx
```

This creates `resnet50.bs128.onnx` with a fixed batch size of 128, which is optimal for TensorRT performance benchmarking.

**Note:** The script requires the `onnx` package. If you have modelopt installed, this dependency should already be available.

### What's in This Directory

- `set_batch_size.py` - Script to convert dynamic batch size models to fixed batch size
- `README.md` - This guide

**Note:** ONNX model files are not included in the repository (excluded via `.gitignore`). Download and prepare them using the instructions above.

## Quick Start

### Basic Usage

Optimize the ResNet50 model with INT8 quantization:

```bash
# Using the fixed batch size model (recommended)
python3 -m modelopt.onnx.quantization.autotune \
--model resnet50.bs128.onnx \
--output ./resnet50_results \
--quant-type int8 \
--schemes-per-region 30

# Or use the original dynamic batch size model
python3 -m modelopt.onnx.quantization.autotune \
--model resnet50_Opset17.onnx \
--output ./resnet50_results \
--quant-type int8 \
--schemes-per-region 30
```

This will:

1. Automatically discover optimization regions in your model
2. Test 30 different Q/DQ placement schemes per region pattern
3. Measure TensorRT performance for each scheme
4. Export the best optimized model to `./resnet50_results/optimized_final.onnx`

### FP8 Quantization

For FP8 quantization (faster on modern GPUs):

```bash
python3 -m modelopt.onnx.quantization.autotune \
--model resnet50.bs128.onnx \
--output ./resnet50_fp8_results \
--quant-type fp8 \
--schemes-per-region 50
```

### Faster Exploration

For quick experiments, reduce the number of schemes:

```bash
python3 -m modelopt.onnx.quantization.autotune \
--model resnet50.bs128.onnx \
--output ./resnet50_quick \
--schemes-per-region 15
```

## Output Structure

After running, you'll get:

```log
resnet50_results/
├── optimized_final.onnx # Your optimized model
├── baseline.onnx # Baseline for comparison
├── autotuner_state.yaml # Resume checkpoint
├── autotuner_state_pattern_cache.yaml # Reusable patterns
└── logs/
├── baseline.log # TensorRT baseline log
├── region_*_scheme_*.log # Per-scheme logs
└── final.log # Final model log
```

## Using the Optimized Model

Deploy with TensorRT:

```bash
trtexec --onnx=resnet50_results/optimized_final.onnx \
--saveEngine=resnet50.engine \
--stronglyTyped
```

## Pattern Cache

Reuse learned patterns on similar models:

```bash
# First optimization on ResNet50
python3 -m modelopt.onnx.quantization.autotune \
--model resnet50.bs128.onnx \
--output ./resnet50_run

# Download and prepare ResNet101 (or any similar model)
curl -L -o resnet101_Opset17.onnx https://github.com/onnx/models/raw/main/Computer_Vision/resnet101-v2-7.onnx
python3 set_batch_size.py resnet101_Opset17.onnx --batch-size 128 --output resnet101.bs128.onnx

# Reuse patterns from ResNet50 on ResNet101 (much faster!)
python3 -m modelopt.onnx.quantization.autotune \
--model resnet101.bs128.onnx \
--output ./resnet101_run \
--pattern-cache ./resnet50_run/autotuner_state_pattern_cache.yaml
```

## Optimize from Existing QDQ Model

If you already have a quantized model (e.g., from manual quantization or another tool), you can use it as a starting point to potentially find even better Q/DQ placements:

```bash
# Use an existing QDQ model as baseline
python3 -m modelopt.onnx.quantization.autotune \
--model resnet50.bs128.onnx \
--output ./resnet50_improved \
--qdq-baseline resnet50_quantized.onnx \
--schemes-per-region 40
```

This will:

1. Extract Q/DQ insertion points from the baseline model
2. Use them as seed schemes during optimization
3. Generate and test variations to find better placements
4. Compare against the baseline performance

**Use cases:**

- **Improve existing quantization**: Fine-tune manually quantized models
- **Compare tools**: Test if autotuner can beat other quantization methods
- **Bootstrap optimization**: Start from expert-tuned schemes

**Example workflow:**

```bash
# Step 1: Create initial quantized model with any quantization tool
# For example, using modelopt's quantize function:
python3 -c "
import numpy as np
from modelopt.onnx.quantization import quantize

# Create dummy calibration data (replace with real data for production)
dummy_input = np.random.randn(128, 3, 224, 224).astype(np.float32)
quantize(
'resnet50.bs128.onnx',
calibration_data=dummy_input,
calibration_method='entropy',
output_path='resnet50_quantized.onnx'
)
"

# Step 2: Use the quantized baseline for autotuning
# The autotuner will try to find better Q/DQ placements than the initial quantization
python3 -m modelopt.onnx.quantization.autotune \
--model resnet50.bs128.onnx \
--output ./resnet50_autotuned \
--qdq-baseline resnet50_quantized.onnx \
--schemes-per-region 50
```

**Note:** This example uses dummy calibration data. For production use, provide real calibration data representative of your inference workload.

## Remote Autotuning with TensorRT

TensorRT 10.16+ supports remote autotuning, which allows you to offload TensorRT's optimization process to remote hardware. This is useful when you want to optimize models for different target GPUs without having direct access to them.

To use remote autotuning during Q/DQ placement optimization:

```bash
python3 -m modelopt.onnx.quantization.autotune \
--model resnet50.bs128.onnx \
--output ./resnet50_remote_autotuned \
--schemes-per-region 50 \
--use_trtexec \
--trtexec_benchmark_args "--remoteAutoTuningConfig=\"<remote autotuning config>\""
```

**Requirements:**

- TensorRT 10.16 or later
- Valid remote autotuning configuration
- `--use_trtexec` flag must be enabled

Replace `<remote autotuning config>` with your actual remote autotuning configuration string provided by your TensorRT setup.

## Programmatic API Usage

All examples above use the command-line interface. For **low-level programmatic control** in your Python code, use the Python API directly. This allows you to:

- Integrate autotuning into custom pipelines
- Implement custom evaluation functions
- Control state management and checkpointing
- Build custom optimization workflows

**See the API Reference documentation for low-level usage:**

- [`docs/source/reference/2_qdq_placement.rst`](../../docs/source/reference/2_qdq_placement.rst)

The API docs include detailed examples of:

- Using the `Autotuner` class directly
- Customizing region discovery and scheme generation
- Managing optimization state programmatically
- Implementing custom performance evaluators

## Documentation

For comprehensive documentation on QDQ placement optimization, see:

- **User Guide**: [`docs/source/guides/9_qdq_placement.rst`](../../docs/source/guides/9_qdq_placement.rst)
- Detailed explanations of how the autotuner works
- Advanced usage patterns and best practices
- Configuration options and performance tuning
- Troubleshooting common issues

- **API Reference**: [`docs/source/reference/2_qdq_placement.rst`](../../docs/source/reference/2_qdq_placement.rst)
- Complete API documentation for all classes and functions
- Low-level usage examples
- State management and pattern cache details

For command-line help:

```bash
python3 -m modelopt.onnx.quantization.autotune --help
```
121 changes: 121 additions & 0 deletions examples/qdq_placement/set_batch_size.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Script to set a fixed batch size for ONNX models.

This script modifies an ONNX model with dynamic batch size to use a fixed batch size,
which is often beneficial for TensorRT performance benchmarking.

Usage:
python set_batch_size.py resnet50_Opset17.onnx --batch-size 128 --output resnet50.bs128.onnx
"""

import argparse

import onnx
from onnx import shape_inference


def set_batch_size(model_path: str, batch_size: int, output_path: str) -> None:
"""
Set a fixed batch size for an ONNX model.

Args:
model_path: Path to input ONNX model
batch_size: Desired batch size
output_path: Path to save modified model
"""
# Load the model
print(f"Loading model from {model_path}...")
model = onnx.load(model_path)

# Get the input tensor
graph = model.graph
input_tensor = graph.input[0]

print(
f"Original input shape: {[d.dim_param or d.dim_value for d in input_tensor.type.tensor_type.shape.dim]}"
)

# Modify the batch dimension (first dimension)
if len(input_tensor.type.tensor_type.shape.dim) > 0:
input_tensor.type.tensor_type.shape.dim[0].dim_value = batch_size
# Clear any symbolic dimension parameter
input_tensor.type.tensor_type.shape.dim[0].ClearField("dim_param")

# Also update output shapes if needed
for output_tensor in graph.output:
if len(output_tensor.type.tensor_type.shape.dim) > 0:
output_tensor.type.tensor_type.shape.dim[0].dim_value = batch_size
output_tensor.type.tensor_type.shape.dim[0].ClearField("dim_param")

print(
f"Modified input shape: {[d.dim_param or d.dim_value for d in input_tensor.type.tensor_type.shape.dim]}"
)

# Run shape inference to propagate the batch size through the model
print("Running shape inference...")
try:
model = shape_inference.infer_shapes(model)
except Exception as e:
print(f"Warning: Shape inference failed: {e}")
print("Continuing without shape inference...")

# Save the modified model
print(f"Saving modified model to {output_path}...")
onnx.save(model, output_path)

# Verify the saved model
print("Verifying model...")
onnx.checker.check_model(output_path)
print("✓ Model saved and verified successfully!")


def main():
parser = argparse.ArgumentParser(
description="Set a fixed batch size for an ONNX model",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Set batch size to 128 for ResNet50
python set_batch_size.py resnet50_Opset17.onnx --batch-size 128 --output resnet50.bs128.onnx

# Set batch size to 1 for single-image inference
python set_batch_size.py resnet50_Opset17.onnx --batch-size 1 --output resnet50.bs1.onnx
""",
)

parser.add_argument("model", help="Path to input ONNX model")
parser.add_argument(
"--batch-size", "-b", type=int, default=128, help="Batch size to set (default: 128)"
)
parser.add_argument(
"--output", "-o", help="Path to save modified model (default: <model>_bs<batch_size>.onnx)"
)

args = parser.parse_args()

# Generate output path if not provided
if args.output is None:
base_name = args.model.rsplit(".", 1)[0]
args.output = f"{base_name}.bs{args.batch_size}.onnx"

set_batch_size(args.model, args.batch_size, args.output)


if __name__ == "__main__":
main()
2 changes: 1 addition & 1 deletion modelopt/onnx/logging_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def configure_logging(level=logging.INFO, log_file=None):
for handler in logger.handlers[:]:
logger.removeHandler(handler)

formatter = logging.Formatter("[modelopt][onnx] - %(levelname)s - %(message)s")
formatter = logging.Formatter("%(asctime)s - [modelopt][onnx] - %(levelname)s - %(message)s")

# Add file handler if log_file is specified
if log_file:
Expand Down