diff --git a/tutorial/markdown/nodejs/nodejs-langchain-pdf-chat/nodejs-langchain-pdf-chat.md b/tutorial/markdown/nodejs/nodejs-langchain-pdf-chat/nodejs-langchain-pdf-chat.md index dcf5d4b..e443dea 100644 --- a/tutorial/markdown/nodejs/nodejs-langchain-pdf-chat/nodejs-langchain-pdf-chat.md +++ b/tutorial/markdown/nodejs/nodejs-langchain-pdf-chat/nodejs-langchain-pdf-chat.md @@ -11,9 +11,10 @@ description: content_type: tutorial filter: sdk technology: - - fts + - vector search - kv tags: + - Search Vector Index - Next.js - LangChain - OpenAI @@ -37,7 +38,7 @@ This tutorial will demonstrate how to - ## Prerequisites - [LTS Node.js Version](https://nodejs.org/en/download) -- Couchbase Cluster (Self Managed or Capella) version 7.6+ with [Search Service](https://docs.couchbase.com/server/current/fts/fts-introduction.html) +- Couchbase Cluster (Self Managed or Capella) version 7.6+ with [Search Service](https://docs.couchbase.com/server/current/search/search.html) > Note that this tutorial is designed to work with the latest Node SDK version (4.3.0+) for Couchbase. It will not work with the older Node.js versions. @@ -72,7 +73,7 @@ Specifically, you need to do the following: #### Self Managed Setup -- Follow [Couchbase Installation Options](/tutorial-couchbase-installation-options) for installing the latest Couchbase Database Server Instance. Make sure to add the [Search Service](https://docs.couchbase.com/server/current/fts/fts-introduction.html) +- Follow [Couchbase Installation Options](/tutorial-couchbase-installation-options) for installing the latest Couchbase Database Server Instance. Make sure to add the [Search Service](https://docs.couchbase.com/server/current/search/search.html) ### Create Bucket @@ -193,7 +194,7 @@ DB_PASSWORD= DB_BUCKET= DB_SCOPE= DB_COLLECTION= -INDEX_NAME= +INDEX_NAME= ``` > [OpenAI](https://openai.com) API Key is required for usage in generating embedding and querying LLM @@ -254,7 +255,7 @@ When a user asks a question or provides a prompt: - The app queries this search index using the user's query embedding. Couchbase's Vector Search calculates the [similarity](https://www.couchbase.com/blog/vector-similarity-search/) (e.g., dot product) between the query embedding and the indexed PDF embeddings, enabling fast retrieval of the nearest neighbor embeddings. - The nearest neighbor embeddings represent the most semantically similar passages or sections from the PDF documents compared to the user's query. - The app retrieves the text content associated with these nearest neighbor embeddings, providing the necessary context for generating a relevant response. -- Couchbase's Vector Search supports advanced indexing techniques, such as [scoped indexes](https://docs.couchbase.com/nodejs-sdk/current/howtos/full-text-searching-with-sdk.html#scoped-vs-global-indexes), [dynamic indexing](https://docs.couchbase.com/server/current/fts/fts-creating-index-from-REST-dynamic.html) and [hybrid search](https://docs.couchbase.com/nodejs-sdk/current/howtos/full-text-searching-with-sdk.html#combining-fts-and-vector-queries), allowing for efficient management, better scaling of the vector store and multiple types of search supported. +- Couchbase's Vector Search supports advanced indexing techniques, such as [scoped indexes](https://docs.couchbase.com/nodejs-sdk/current/howtos/full-text-searching-with-sdk.html#scoped-vs-global-indexes), [dynamic indexing](https://docs.couchbase.com/server/current/search/create-search-index-rest-api.html) and [hybrid search](https://docs.couchbase.com/nodejs-sdk/current/howtos/full-text-searching-with-sdk.html#combining-fts-and-vector-queries), allowing for efficient management, better scaling of the vector store and multiple types of search supported. - The search index facilitates fast and accurate retrieval, enabling the app to provide context-aware and relevant responses to the user's queries, even when the phrasing or terminology differs from the PDF content. - Couchbase's Vector Search integrates seamlessly with LangChain's [CouchbaseSearchVectorStore](https://js.langchain.com/docs/integrations/vectorstores/couchbase#create-vector-store) class, abstracting away the complexities of vector similarity calculations.