From c41ea92e725c1ea76ebfe35416d6a7a3bf8465d4 Mon Sep 17 00:00:00 2001 From: Eunsoo Cho Date: Fri, 17 Jul 2020 20:24:02 +0900 Subject: [PATCH 1/2] df.plot.scatter --- .../.ipynb_checkpoints/HW#1-checkpoint.ipynb | 144 ++++++++++++++++++ Homework/Homework#1/HW#1.ipynb | 144 ++++++++++++++++++ 2 files changed, 288 insertions(+) create mode 100644 Homework/Homework#1/.ipynb_checkpoints/HW#1-checkpoint.ipynb create mode 100644 Homework/Homework#1/HW#1.ipynb diff --git a/Homework/Homework#1/.ipynb_checkpoints/HW#1-checkpoint.ipynb b/Homework/Homework#1/.ipynb_checkpoints/HW#1-checkpoint.ipynb new file mode 100644 index 0000000..3656cbb --- /dev/null +++ b/Homework/Homework#1/.ipynb_checkpoints/HW#1-checkpoint.ipynb @@ -0,0 +1,144 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
05.13.5
14.93.0
24.73.2
34.63.1
45.03.6
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "0 5.1 3.5\n", + "1 4.9 3.0\n", + "2 4.7 3.2\n", + "3 4.6 3.1\n", + "4 5.0 3.6" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "df = pd.read_csv('data.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEJCAYAAAB2T0usAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df7RddXnn8fcHyABCNDbJikgSQycMFRUjXB1SfiigLq00jAOzpI6NOCodq4I/6u+1qE2XTmHqj2KtloG2oA5ig9Bo/QEjIDgC7Q0GkCB4xygBMYZAQqKYEnjmj7MTbm7uuWef3O/5nu8+5/Na6y7O2Xtn72fvuznP3fs8z/4qIjAzs+G2T78DMDOz/nMyMDMzJwMzM3MyMDMznAzMzAwnAzMzI0MykLSvpB9I+vok886StFHSmurnLb2Ox8zM9rRfhm2cC9wNPL3N/Csi4h0Z4jAzszZ6mgwkzQdeA3wMeE+Kdc6ZMycWLVqUYlVmZkNj9erVD0XE3Hbze31l8Gng/cDMKZY5XdKJwL3AuyNi/VQrXLRoEaOjowlDNDMbfJJ+NtX8nn1nIOlU4JcRsXqKxb4GLIqIo4BrgUvbrOtsSaOSRjdu3NiDaM3Mhlsvv0A+Dlgm6afAl4GTJX1x/AIRsSkitldvLwaOmWxFEXFRRIxExMjcuW2vcszMbC/1LBlExIciYn5ELALOBK6LiDeMX0bSIePeLqP1RbOZmWWWo5poN5JWAKMRsQo4R9IyYAfwMHBW7njMzAzUtEdYj4yMhL9ANjPrjqTVETHSbr47kK3xNm3bzu3rN7Np2/bOC5vZpLLfJjJL6Z/WPMAHrryDGfvsw+NPPskFpx/FsiWH9jsss8bxlYE11qZt2/nAlXfwm8efZOv2Hfzm8Sd5/5V3+ArBbC84GVhj3f/IY8zYZ/dTeMY++3D/I4/1KSKz5nIysMaa/8wDefzJJ3eb9viTTzL/mQf2KSKz5nIysMaaffD+XHD6URwwYx9m7r8fB8zYhwtOP4rZB+/f79DMGsdfIFujLVtyKMctnsP9jzzG/Gce6ERgtpecDKzxZh+8v5OA2TT5NpGZmTkZmJmZk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgbWZx6YxqwMfhyF9Y0HpjErh68MrC88MI1ZWZwMrC88MI1ZWZwMrC88MI1ZWZwMrC88MI1ZWfwFsvWNB6YxK4eTgfWVB6YxK4NvE1lb7gEwGx6+MrBJuQfAbLj4ysD24B4As+HjZGB7cA+A2fBxMrA9uAfAbPg4Gdge3ANgNnz8BbJNyj0AZsOl58lA0r7AKPBARJw6Yd7+wGXAMcAm4HUR8dNex2T1uAfAbHjkuE10LnB3m3lvBh6JiMXAp4DzM8RjQ8b9Emad9fTKQNJ84DXAx4D3TLLIacBHq9crgb+WpIiIXsZlw8P9Emb19PrK4NPA+4En28w/FFgPEBE7gC3A7B7HZEPC/RJm9fUsGUg6FfhlRKxOsK6zJY1KGt24cWOC6GwYuF/CrL5eXhkcByyT9FPgy8DJkr44YZkHgAUAkvYDnkHri+TdRMRFETESESNz587tYcg2SNwvYVZfz5JBRHwoIuZHxCLgTOC6iHjDhMVWAW+sXp9RLePvCywJ90uY1Ze9z0DSCmA0IlYBlwBfkDQGPEwraZgl434Js3rUtD/ER0ZGYnR0tN9hmJk1iqTVETHSbr4fR2E9M7ZhKytH1zO2YWu/QzGzDvw4CuuJ866+k8tuuW/X++VLF7LitBf0MSIzm4qvDCy5sQ1bd0sEAJfdfJ+vEMwK5mRgya1Zv7mr6WbWf04GltySBbO6mm5m/edkYMktnjeT5UsX7jZt+dKFLJ43s08RmVkn/gLZemLFaS9g+bGLWLN+M0sWzHIiMCuck4H1zOJ5M50EzBrCt4nMzMzJYFiNrtvEJ6+5h9F1ezwXsHE8eI2VLsU52uvz3LeJhtAbLr6F7421ksCF141xwuLZfOEtx/Y5qr3jwWusdCnO0Rznua8Mhszouk27EsFON41tauQVggevsdKlOEdznedOBkPmxh8/1NX0knnwGitdinM013nuZDBkTjx8TlfTS+bBa6x0Kc7RXOe5k8GQGTlsNics3n2Y6RMWz2bksOYNPe3Ba6x0Kc7RXOe5xzMYUqPrNnHjjx/ixMPnNDIRjLdp23YPXmNFS3GOTncdncYzcDIwMxsCHtzGJpWj7tn1/2bN4T6DIZSj7tn1/2bN4iuDIZOj7tn1/2bN42QwZHLUPbv+36x5nAyGTI66Z9f/mzWPk8GQyVH37Pp/s+ZxaemQylH37Pp/s3J0Ki11NdGQmn3w/tP+gO60jhTbMLM8fJsosRy19XW24Rp/GwY+z9PxlUFCOWrr62zDNf42DHyep+Urg0Ry1NbX2YZr/G0Y+DxPz8kgkRy19XW24Rp/GwY+z9NzMkgkR219nW24xt+Ggc/z9JwMEslRW19nG67xt2Hg8zw99xkklqO2vs42XONvw8DneX3T7jOQdBzwUeA51fICIiJ+O1WQgyRHbX2dbbjG34aBz/N06twmugT4JHA88GJgpPrvlCQdIOlfJN0u6S5JfzbJMmdJ2ihpTfXzlm53wCY3tmErK0fXM7Zh617Nh3J6Jsys9+r0GWyJiG/uxbq3AydHxDZJM4DvSfpmRNwyYbkrIuIde7F+a+O8q+/kslvu2/V++dKFrDjtBbXnQzk9E2aWR9srA0lHSzoauF7S/5S0dOe0avqUomVb9XZG9dOsLygaaGzD1t0+6AEuu/m+XVcAneZDOT0TZpbPVFcGn5jwfvwXDwGc3GnlkvYFVgOLgc9GxK2TLHa6pBOBe4F3R8T6SdZzNnA2wMKFCzttdqitWb+57fTF82Z2nA9P1XD/hqdK93bWcKe6P5tjG2ZWX9tkEBEnAUj67Yj4yfh5kmp9eRwRTwBLJM0CrpL0/Ij44bhFvgZcHhHbJf0RcCmTJJmIuAi4CFrVRHW2PayWLJg15fRO86Gcngkzy6fOF8grJ5n2j91sJCI2A9cDr5owfVNE7LwvcDFwTDfrtT0tnjeT5Ut3v3pavnThrr/6O82HcnomzCyftn0Gkn4HeB5wAfC+cbOeDrwvIp435YqlucDjEbFZ0oHANcD5EfH1ccscEhEPVq9fC3wgIo6dar2l9xmUYmzDVtas38ySBbN2+6CvOx/K6Zkws+mbTp/BEcCpwCzg98dN3wq8tca2DwEurb432Af4SkR8XdIKYDQiVgHnSFoG7AAeBs6qsV6rYfG8mW0/5OvMh3J6Jsys9zp2IEtaGhE3Z4qnI18ZmJl1L8VIZ6+X9AcTpm2h9df9P00rugGU4rZHnVs4011HjkdapNiPUuQYJjTVdsz2Rp1ksD/wOzz1pfHpwDrghZJOioh39Sq4pknRRFWnIWy668gxQE6K/ShFit+rByWy0tWpJjoKOCkiPhMRnwFeTis5vBZ4ZS+Da5IUTVR1GsKmu44cA+Sk2I9SpPi9elAia4I6yeCZwMHj3h8E/FbVQ+AztZJisI2pGsJSrSPHADkp9qMUKX6vHpTImqDObaILgDWSbqD1xNITgY9LOgj4Pz2MrVFSNFHVaQib7jpyDJCTYj9KkeL36kGJrAk6XhlExCXA7wJXA1cBx0fExRHxq4h439T/enikaKKq0xA23XXkGCAnxX6UIsXv1YMSWRPUGtxG0qE8NZ4BABFxYw/jaqv00lJXE9WPoUlcTWRN16m0tE6fwfnA64C7YNdTxSIiliWLsgulJwMzsxKl6DP4T8AR454hZA3Q6S9M/wVaphKupkqIwfKrkwx+QmssAieDhuhUr+569jKV0JtRQgzWH3VKS39Nq5robyVduPOn14HZ3ulUr+569jKV0JtRQgzWP3WuDFZVP9YAnQaN8aAyZaoz6NAwxGD90zEZRMSl1SOoF0bEPRlismnoVK/uevYyldCbUUIM1j8dbxNJ+n1gDfCt6v0SSb5SKFSnenXXs5ephN6MEmKw/qlTWrqa1lCUN0TEi6ppP4yI52eIbw8uLa3H1UTNVEIlTwkxWHopSksfj4gtksZPe7LdwlaGToPGeFCZMtUZdGgYYrD86lQT3SXp9cC+kg6X9Bng+z2Oqy82bdvO7es3T6uyptM6xjZsZeXo+p5XaKTYl2HSlOPV6fzJtR+dtlMnjhz/v1l9da4M3gl8hFafweXAt4E/72VQ/ZDjmfW5arjdR9CdphyvFONUpJCijyXXGBFWX50H1f06Ij4SES+OiJHq9W9yBJdLjmfW56rhdh9Bd5pyvFKMU5FCij6WXGNEWHfaJgNJX5O0qt1PziB7Lccz63M949/Pxe9OU45XinEqUui0nVxjNzTl99YkU90m+stsUfRZjmfW56rhdh9Bd5pyvFKMU5FCij6WXGNEWHfaXhlExHen+skZZK/leGZ9rhpu9xF0pynHK8U4FSmk6GPJNUaEdafWeAYl6WWfQY5n1ueq4XYfQXeacrxSjFORQoo+llxjRFjLtMczKI2bzszMutcpGdTpM7AuDFKvgpUnR1396LpNfPKaexhdt6mv67C82n6BLOlrQNvLhn6NdFayQepVsPLkqKt/w8W38L2x1gf4hdeNccLi2XzhLcdmX4fl52qiRMbXPe98PPT7r7yD4xbPqX0vs9M62tWaLz92kR8fMOBSnF+djK7btOtDfKebxjYxum4TI4fNzrYO64+2yWDQKoZ6LcU4AZ3W4efND68c41Dc+OOH2k6v+0GeYh3WH3UeYX24pJWS1kr6yc6fHME1ySD1Klh5ctTVn3j4nK6m92od1h91vkD+e+BzwA7gJOAy4Iu9DKqJBqlXwcqTo65+5LDZnLB497/eT1g8u6u/6FOsw/qj1ngGEXGMpDsj4gXjp2WJcILSS0sHqVfBypOjrn503SZu/PFDnHj4nL3+EE+xDktr2n0Gkr4PHA+sBK4DHgD+IiKOSBloXaUnAzOzEqXoMzgXeBpwDnAM8IfAG2ts+ABJ/yLpdkl3SfqzSZbZX9IVksYk3SppUY14zMwssTqPsP7XiNgGPAqcExH/OSJuqbHu7cDJEfFCYAnwKkkTi43fDDwSEYuBTwHndxd+fbkG20ghxQAmJexLihjqNNjl2E6dbZTQDFin2StFU2OO82uQzvMS4uyk4+A2kkZofYk8s3q/BfhvEbF6qn8XrftP26q3M6qfifekTgM+Wr1eCfy1JEXiZ2TkGmwjhRQDmJSwLyliqNNgl2M7dbZRQjNgnWavFE2NOc6vQTrPS4izjjq3if4O+OOIWBQRi4C300oOHUnaV9Ia4JfAtRFx64RFDgXWA0TEDmALkPTbplyDbaSQYgCTEvYlRQx1BgPKsZ0628g1cNFUpmr22inFAEw5zq9BOs9LiLOuOsngiYi4aeebiPgerTLTjiLiiYhYAswHXiLp+XsTpKSzJY1KGt24cWNX/zbXYBsppBjApIR9SRFDncGAcmynzjZyDVw0lamavXZKMQBTjvNrkM7zEuKsq04y+K6kv5X0MkkvlfQ3wA2SjpZ0dJ2NRMRm4HrgVRNmPQAsAJC0H/AMYI+bnRFxUTXk5sjcuXPrbHKXXINtpJBiAJMS9iVFDHUa7HJsp842SmgGrNPslaKpMcf5NUjneQlx1lUnGbwQ+A/An9K6v/9c4EXAJ5ji+UWS5kqaVb0+EHgF8KMJi63iqcqkM4DrUn9fkGuwjRRSDGBSwr6kiKFOg12O7dTZRgnNgHWavVI0NeY4vwbpPC8hzrp6Np6BpKOAS4F9aSWdr0TECkkrgNGIWCXpAOALtJLLw8CZETHloy72ts8g12AbKaQYwKSEfUkRQ50GuxzbqbONEpoB6zR7pWhqzHF+DdJ5XkKcKZrO5gEfB54dEa+WdCSwNCIuSRtqPW46MzPrXoqms38Avg08u3p/L/Cu6YdWnibUAg+bUmq4U8SRax2dDNN5Pkz7Ol0d+wyAORHxFUkfglYJqKQnehxXdk2pBR4mpdRwp4gj1zpS7MugGKZ9TaHOlcGvJM2mahiruoi39DSqzJpUCzwsSqnhThFHrnWk2JdBMUz7mkqdZPAeWlU//17S/6X1COt39jSqzJpUCzwsSqnhThFHrnWk2JdBMUz7mkrH20QRcZuklwJHAALuiYjHex5ZRk2qBR4WpdRwp4gj1zpS7MugGKZ9TaXtlYGkF0t6Fux6VMQxwMeAT0j6rUzxZdGkWuBhUUoNd4o4cq0jxb4MimHa11TalpZKug14eUQ8LOlE4Mu0bg8tAZ4bEWfkC/MpvSwtLaEW2HZXSg13ijhyrSPFvgyKYdrXTva6z0DS7dXjp5H0WWBjRHy0er+meuZQdu4zMDPr3nT6DPatnhcEcAqtUc52qlOSajZtKcYRyFVrnmMcilL2dZDq90vpU+m3qT7UL6f1kLqHgMeAmwAkLWbASkutTCnGEchVa55jHIpS9nWQ6vdL6VMpQdsrg4j4GPBeWh3Ix497gNw+DFhpqZUnxTgCuWrNc4xDUcq+DlL9fil9KqWYss8gIm6JiKsi4lfjpt0bEbf1PjQbZinGEchVa55jHIpS9nWQ6vdL6VMpRZ2mM7PsUowjkKvWPMc4FKXs6yDV75fSp1IKJwMrUopxBHLVmucYh6KUfR2k+v1S+lRK0bPxDHrFpaXDJcU4ArlqzXOMQ1HKvg5S/X4pfSq9Nu3xDErjZGBm1r0U4xnYkCqhNjpFDN9Z+ws+sPJ2vrP2F32NI8V2Svid2GBy85hNqoTa6BQxvPJTN3DvhlYx3BWj93PEvIP49rtflj2OFNsp4Xdig8tXBraHEmqjU8TwnbW/2JUIdrpnw6+6ukIopX6/hN+JDTYnA9tDCbXRKWK4Zu2Grqb3Ko4U2ynhd2KDzcnA9lBCbXSKGF555LyupvcqjhTbKeF3YoPNycD2UEJtdIoYTjnyWRwx76Ddph0x7yBOOfJZWeNIsZ0Sfic22Fxaam2VUBudIobvrP0F16zdwCuPnNdVIkgdR4rtlPA7sWZyn4GZmbnPwMqWom6+lNp89wBYO004N9xnYH2Tom6+lNp89wBYO005N3xlYH2Rom6+lNp89wBYO006N5wMrC9S1M2XUpvvHgBrp0nnhpOB9UWKuvlSavPdA2DtNOnccDKwvkhRN19Kbb57AKydJp0bLi21vkpRN19Kbb57AKydEs6NTqWlriayvpp98P7T/p+j0zpSbCNFHDa8mnBu9Ow2kaQFkq6XtFbSXZLOnWSZl0naImlN9XNer+IxM7P2enllsAN4b0TcJmkmsFrStRGxdsJyN0XEqT2MY+DkuLWSS4pbPKXsSwqdhrXMYZCOp9XXs2QQEQ8CD1avt0q6GzgUmJgMrAs5GrVySdEwVsq+pHDe1Xdy2S337Xq/fOlCVpz2gqwxDNLxtO5kqSaStAh4EXDrJLOXSrpd0jclPS9HPE2Vo1ErlxQNY6XsSwpjG7bulggALrv5PsY2bM0WwyAdT+tez5OBpIOBK4F3RcSjE2bfBjwnIl4IfAa4us06zpY0Kml048aNvQ24YDkatXJJ0TBWyr6ksGb95q6m98IgHU/rXk+TgaQZtBLBlyLiqxPnR8SjEbGtev0NYIakOZMsd1FEjETEyNy5c3sZctFyNGrlkqJhrJR9SWHJglldTe+FQTqe1r1eVhMJuAS4OyI+2WaZZ1XLIeklVTybehVT0+Vo1MolRcNYKfuSwuJ5M1m+dOFu05YvXZj1S+RBOp7WvZ41nUk6HrgJuBPY+efGh4GFABHxeUnvAN5Gq/LoMeA9EfH9qdbrpjNXE+3NMk3haiLrFQ9uY2ZmHtxmEDVhoIy6xjZsZeXo+qxVM2a2Jz+OomEGqQ68hLp6M2vxlUGDDFIdeAl19Wb2FCeDBhmkOvAS6urN7ClOBg0ySHXgJdTVm9lTnAwaZJDqwEuoqzezp7i0tIEGqQ68hLp6s2HgwW0GUBMGyqhr8byZTgJmBfBtoi40qb6/KbE2Jc5cfDysX3xlUFOT6vubEmtT4szFx8P6yVcGNTSpvr8psTYlzlx8PKzfnAxqaFJ9f1NibUqcufh4WL85GdTQpPr+psTalDhz8fGwfnMyqKFJ9f1NibUpcebi42H95j6DLjSpvr8psTYlzlx8PKxX3GeQUJPq+5sSa1PizMXHw/rFt4nMakgx7oJ7CKxkvjIw6yDFuAvuIbDS+crAbAopxl1wD4E1gZOB2RRSjLvgHgJrAicDsymkGHfBPQTWBE4GZlNIMe6CewisCdxnYFZDinEX3ENg/eQ+A7MEUoy74B4CK5lvE5mZmZOBmZk5GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmRg+TgaQFkq6XtFbSXZLOnWQZSbpQ0pikOyQd3at4zMysvV5eGewA3hsRRwLHAm+XdOSEZV4NHF79nA18rofxDBUPpGJm3ejZ4ygi4kHgwer1Vkl3A4cCa8ctdhpwWbQekHSLpFmSDqn+re0lD6RiZt3K8p2BpEXAi4BbJ8w6FFg/7v391TTbSx5Ixcz2Rs+TgaSDgSuBd0XEo3u5jrMljUoa3bhxY9oAB4wHUjGzvdHTZCBpBq1E8KWI+OokizwALBj3fn41bTcRcVFEjETEyNy5c3sT7IDwQCpmtjd6WU0k4BLg7oj4ZJvFVgHLq6qiY4Et/r5gejyQipntjV6OZ3Ac8IfAnZLWVNM+DCwEiIjPA98Afg8YA34NvKmH8QyNZUsO5bjFczyQipnV1stqou8B6rBMAG/vVQzDzAOpmFk33IFsZmZOBmZm5mRgZmY4GZiZGU4GZmYGqFXQ0xySNgI/62MIc4CH+rj9bjQlVseZVlPihObEOghxPici2nbtNi4Z9Juk0YgY6XccdTQlVseZVlPihObEOgxx+jaRmZk5GZiZmZPB3rio3wF0oSmxOs60mhInNCfWgY/T3xmYmZmvDMzMzMlgSpL2lfQDSV+fZN5ZkjZKWlP9vKVPMf5U0p1VDKOTzJekCyWNSbpD0tH9iLOKpVOsL5O0ZdwxPa9Pcc6StFLSjyTdLWnphPlFHNMacZZyPI8YF8MaSY9KeteEZfp+TGvGWcoxfbekuyT9UNLlkg6YMH9/SVdUx/PWarTJKfXyEdaD4FzgbuDpbeZfERHvyBhPOydFRLva4lcDh1c//xH4XPXffpkqVoCbIuLUbNFM7q+Ab0XEGZL+HfC0CfNLOaad4oQCjmdE3AMsgdYfWLQGsLpqwmJ9P6Y144Q+H1NJhwLnAEdGxGOSvgKcCfzDuMXeDDwSEYslnQmcD7xuqvX6yqANSfOB1wAX9zuWaToNuCxabgFmSTqk30GVStIzgBNpDcxERPxbRGyesFjfj2nNOEt0CvD/ImJi42jfj+kE7eIsxX7AgZL2o/VHwM8nzD8NuLR6vRI4pRpwrC0ng/Y+DbwfeHKKZU6vLmlXSlowxXK9FMA1klZLOnuS+YcC68e9v7+a1g+dYgVYKul2Sd+U9LycwVUOAzYCf1/dIrxY0kETlinhmNaJE/p/PCc6E7h8kuklHNPx2sUJfT6mEfEA8JfAfcCDtEaIvGbCYruOZ0TsALYAs6dar5PBJCSdCvwyIlZPsdjXgEURcRRwLU9l4dyOj4ijaV1mv13SiX2Ko45Osd5Gq2X+hcBngKtzB0jrL66jgc9FxIuAXwEf7EMcndSJs4TjuUt1K2sZ8I/9jKOTDnH2/ZhKeiatv/wPA54NHCTpDdNdr5PB5I4Dlkn6KfBl4GRJXxy/QERsiojt1duLgWPyhrgrjgeq//6S1v3Nl0xY5AFg/FXL/Gpadp1ijYhHI2Jb9fobwAxJczKHeT9wf0TcWr1fSetDd7wSjmnHOAs5nuO9GrgtIjZMMq+EY7pT2zgLOaYvB9ZFxMaIeBz4KvC7E5bZdTyrW0nPADZNtVIng0lExIciYn5ELKJ1uXhdROyWeSfcz1xG64vmrCQdJGnmztfAK4EfTlhsFbC8qtY4ltYl5YOZQ60Vq6Rn7byvKekltM7PKU/g1CLiF8B6SUdUk04B1k5YrO/HtE6cJRzPCf6A9rde+n5Mx2kbZyHH9D7gWElPq2I5hT0/f1YBb6xen0HrM2zKpjJXE3VB0gpgNCJWAedIWgbsAB4GzupDSPOAq6pzcz/gf0fEtyT9d4CI+DzwDeD3gDHg18Cb+hBn3VjPAN4maQfwGHBmpxO4R94JfKm6XfAT4E2FHtNOcZZyPHf+AfAK4I/GTSvumNaIs+/HNCJulbSS1i2rHcAPgIsmfD5dAnxB0hitz6czO63XHchmZubbRGZm5mRgZmY4GZiZGU4GZmaGk4GZmeFkYANM0keqJzveUT1hMumDz9R6guUeT7St8e+eXZUGTjbvBkkj1esPj5u+SNLEHhKzZJwMbCCp9TjnU4Gjq0eGvJzdn33TNxHx84g4o8aiH+68iFkaTgY2qA4BHtr5yJCIeCgifg4g6RhJ360emPftnd3k1V/lf1VdRfyw6jBF0ksk3Vw9EO7747p+JyXpnyUdVb3+gapn3ktaIemt4//Kl3SgpC+rNR7BVcCB1fS/oPVUyjWSvlStel9J/6u62rlG0oGpD5oNLycDG1TXAAsk3SvpbyS9FEDSDFoPGDsjIo4B/g742Lh/97SIWAL8cTUP4EfACdUD4c4DPt5h2zcBJ6j1mOkdtJ51BXACcOOEZd8G/Doingv8KdUzriLig8BjEbEkIv5rtezhwGcj4nnAZuD0msfCrCM/jsIGUkRsk3QMrQ/gk4ArJH0QGAWeD1xbPRpjX1qPAd7p8urf3yjp6ZJmATOBSyUdTusx3DM6bP4mWoOPrAP+GXiFpKcBh0XEPdp91KkTgQurbd4h6Y4p1rsuItZUr1cDi6ZY1qwrTgY2sCLiCeAG4AZJd9J6cNdq4K6IWNrun03y/s+B6yPitdUH+Q0dNv2vwAit5wVdC8wB3lptezq2j3v9BNUtJbMUfJvIBpJa49kePm7SEuBnwD3A3OoLZiTN0O4DlLyumn48rSdnbqH1+N+dj1M+q9O2I+LfaH1Z/V+Am2ldKfwJe94iopr2+mqbzweOGjfv8eq2llnPORnYoDqY1q2dtdWtlyOBj1Yf1GcA587M6NcAAAB6SURBVEu6HVjD7s+C/42kHwCfpzWOLMAFwP+opte9mr6J1gBJj1Wv51f/nehzwMGS7gZWsPvVw0XAHeO+QDbrGT+11Kwi6QbgTyJitN+xmOXmKwMzM/OVgZmZ+crAzMxwMjAzM5wMzMwMJwMzM8PJwMzMcDIwMzPg/wPvVb51S+TLFAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot.scatter(x='Sepal width', y='Sepal length')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Homework/Homework#1/HW#1.ipynb b/Homework/Homework#1/HW#1.ipynb new file mode 100644 index 0000000..3656cbb --- /dev/null +++ b/Homework/Homework#1/HW#1.ipynb @@ -0,0 +1,144 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
05.13.5
14.93.0
24.73.2
34.63.1
45.03.6
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "0 5.1 3.5\n", + "1 4.9 3.0\n", + "2 4.7 3.2\n", + "3 4.6 3.1\n", + "4 5.0 3.6" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "df = pd.read_csv('data.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEJCAYAAAB2T0usAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df7RddXnn8fcHyABCNDbJikgSQycMFRUjXB1SfiigLq00jAOzpI6NOCodq4I/6u+1qE2XTmHqj2KtloG2oA5ig9Bo/QEjIDgC7Q0GkCB4xygBMYZAQqKYEnjmj7MTbm7uuWef3O/5nu8+5/Na6y7O2Xtn72fvuznP3fs8z/4qIjAzs+G2T78DMDOz/nMyMDMzJwMzM3MyMDMznAzMzAwnAzMzI0MykLSvpB9I+vok886StFHSmurnLb2Ox8zM9rRfhm2cC9wNPL3N/Csi4h0Z4jAzszZ6mgwkzQdeA3wMeE+Kdc6ZMycWLVqUYlVmZkNj9erVD0XE3Hbze31l8Gng/cDMKZY5XdKJwL3AuyNi/VQrXLRoEaOjowlDNDMbfJJ+NtX8nn1nIOlU4JcRsXqKxb4GLIqIo4BrgUvbrOtsSaOSRjdu3NiDaM3Mhlsvv0A+Dlgm6afAl4GTJX1x/AIRsSkitldvLwaOmWxFEXFRRIxExMjcuW2vcszMbC/1LBlExIciYn5ELALOBK6LiDeMX0bSIePeLqP1RbOZmWWWo5poN5JWAKMRsQo4R9IyYAfwMHBW7njMzAzUtEdYj4yMhL9ANjPrjqTVETHSbr47kK3xNm3bzu3rN7Np2/bOC5vZpLLfJjJL6Z/WPMAHrryDGfvsw+NPPskFpx/FsiWH9jsss8bxlYE11qZt2/nAlXfwm8efZOv2Hfzm8Sd5/5V3+ArBbC84GVhj3f/IY8zYZ/dTeMY++3D/I4/1KSKz5nIysMaa/8wDefzJJ3eb9viTTzL/mQf2KSKz5nIysMaaffD+XHD6URwwYx9m7r8fB8zYhwtOP4rZB+/f79DMGsdfIFujLVtyKMctnsP9jzzG/Gce6ERgtpecDKzxZh+8v5OA2TT5NpGZmTkZmJmZk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgbWZx6YxqwMfhyF9Y0HpjErh68MrC88MI1ZWZwMrC88MI1ZWZwMrC88MI1ZWZwMrC88MI1ZWfwFsvWNB6YxK4eTgfWVB6YxK4NvE1lb7gEwGx6+MrBJuQfAbLj4ysD24B4As+HjZGB7cA+A2fBxMrA9uAfAbPg4Gdge3ANgNnz8BbJNyj0AZsOl58lA0r7AKPBARJw6Yd7+wGXAMcAm4HUR8dNex2T1uAfAbHjkuE10LnB3m3lvBh6JiMXAp4DzM8RjQ8b9Emad9fTKQNJ84DXAx4D3TLLIacBHq9crgb+WpIiIXsZlw8P9Emb19PrK4NPA+4En28w/FFgPEBE7gC3A7B7HZEPC/RJm9fUsGUg6FfhlRKxOsK6zJY1KGt24cWOC6GwYuF/CrL5eXhkcByyT9FPgy8DJkr44YZkHgAUAkvYDnkHri+TdRMRFETESESNz587tYcg2SNwvYVZfz5JBRHwoIuZHxCLgTOC6iHjDhMVWAW+sXp9RLePvCywJ90uY1Ze9z0DSCmA0IlYBlwBfkDQGPEwraZgl434Js3rUtD/ER0ZGYnR0tN9hmJk1iqTVETHSbr4fR2E9M7ZhKytH1zO2YWu/QzGzDvw4CuuJ866+k8tuuW/X++VLF7LitBf0MSIzm4qvDCy5sQ1bd0sEAJfdfJ+vEMwK5mRgya1Zv7mr6WbWf04GltySBbO6mm5m/edkYMktnjeT5UsX7jZt+dKFLJ43s08RmVkn/gLZemLFaS9g+bGLWLN+M0sWzHIiMCuck4H1zOJ5M50EzBrCt4nMzMzJYFiNrtvEJ6+5h9F1ezwXsHE8eI2VLsU52uvz3LeJhtAbLr6F7421ksCF141xwuLZfOEtx/Y5qr3jwWusdCnO0Rznua8Mhszouk27EsFON41tauQVggevsdKlOEdznedOBkPmxh8/1NX0knnwGitdinM013nuZDBkTjx8TlfTS+bBa6x0Kc7RXOe5k8GQGTlsNics3n2Y6RMWz2bksOYNPe3Ba6x0Kc7RXOe5xzMYUqPrNnHjjx/ixMPnNDIRjLdp23YPXmNFS3GOTncdncYzcDIwMxsCHtzGJpWj7tn1/2bN4T6DIZSj7tn1/2bN4iuDIZOj7tn1/2bN42QwZHLUPbv+36x5nAyGTI66Z9f/mzWPk8GQyVH37Pp/s+ZxaemQylH37Pp/s3J0Ki11NdGQmn3w/tP+gO60jhTbMLM8fJsosRy19XW24Rp/GwY+z9PxlUFCOWrr62zDNf42DHyep+Urg0Ry1NbX2YZr/G0Y+DxPz8kgkRy19XW24Rp/GwY+z9NzMkgkR219nW24xt+Ggc/z9JwMEslRW19nG67xt2Hg8zw99xkklqO2vs42XONvw8DneX3T7jOQdBzwUeA51fICIiJ+O1WQgyRHbX2dbbjG34aBz/N06twmugT4JHA88GJgpPrvlCQdIOlfJN0u6S5JfzbJMmdJ2ihpTfXzlm53wCY3tmErK0fXM7Zh617Nh3J6Jsys9+r0GWyJiG/uxbq3AydHxDZJM4DvSfpmRNwyYbkrIuIde7F+a+O8q+/kslvu2/V++dKFrDjtBbXnQzk9E2aWR9srA0lHSzoauF7S/5S0dOe0avqUomVb9XZG9dOsLygaaGzD1t0+6AEuu/m+XVcAneZDOT0TZpbPVFcGn5jwfvwXDwGc3GnlkvYFVgOLgc9GxK2TLHa6pBOBe4F3R8T6SdZzNnA2wMKFCzttdqitWb+57fTF82Z2nA9P1XD/hqdK93bWcKe6P5tjG2ZWX9tkEBEnAUj67Yj4yfh5kmp9eRwRTwBLJM0CrpL0/Ij44bhFvgZcHhHbJf0RcCmTJJmIuAi4CFrVRHW2PayWLJg15fRO86Gcngkzy6fOF8grJ5n2j91sJCI2A9cDr5owfVNE7LwvcDFwTDfrtT0tnjeT5Ut3v3pavnThrr/6O82HcnomzCyftn0Gkn4HeB5wAfC+cbOeDrwvIp435YqlucDjEbFZ0oHANcD5EfH1ccscEhEPVq9fC3wgIo6dar2l9xmUYmzDVtas38ySBbN2+6CvOx/K6Zkws+mbTp/BEcCpwCzg98dN3wq8tca2DwEurb432Af4SkR8XdIKYDQiVgHnSFoG7AAeBs6qsV6rYfG8mW0/5OvMh3J6Jsys9zp2IEtaGhE3Z4qnI18ZmJl1L8VIZ6+X9AcTpm2h9df9P00rugGU4rZHnVs4011HjkdapNiPUuQYJjTVdsz2Rp1ksD/wOzz1pfHpwDrghZJOioh39Sq4pknRRFWnIWy668gxQE6K/ShFit+rByWy0tWpJjoKOCkiPhMRnwFeTis5vBZ4ZS+Da5IUTVR1GsKmu44cA+Sk2I9SpPi9elAia4I6yeCZwMHj3h8E/FbVQ+AztZJisI2pGsJSrSPHADkp9qMUKX6vHpTImqDObaILgDWSbqD1xNITgY9LOgj4Pz2MrVFSNFHVaQib7jpyDJCTYj9KkeL36kGJrAk6XhlExCXA7wJXA1cBx0fExRHxq4h439T/enikaKKq0xA23XXkGCAnxX6UIsXv1YMSWRPUGtxG0qE8NZ4BABFxYw/jaqv00lJXE9WPoUlcTWRN16m0tE6fwfnA64C7YNdTxSIiliWLsgulJwMzsxKl6DP4T8AR454hZA3Q6S9M/wVaphKupkqIwfKrkwx+QmssAieDhuhUr+569jKV0JtRQgzWH3VKS39Nq5robyVduPOn14HZ3ulUr+569jKV0JtRQgzWP3WuDFZVP9YAnQaN8aAyZaoz6NAwxGD90zEZRMSl1SOoF0bEPRlismnoVK/uevYyldCbUUIM1j8dbxNJ+n1gDfCt6v0SSb5SKFSnenXXs5ephN6MEmKw/qlTWrqa1lCUN0TEi6ppP4yI52eIbw8uLa3H1UTNVEIlTwkxWHopSksfj4gtksZPe7LdwlaGToPGeFCZMtUZdGgYYrD86lQT3SXp9cC+kg6X9Bng+z2Oqy82bdvO7es3T6uyptM6xjZsZeXo+p5XaKTYl2HSlOPV6fzJtR+dtlMnjhz/v1l9da4M3gl8hFafweXAt4E/72VQ/ZDjmfW5arjdR9CdphyvFONUpJCijyXXGBFWX50H1f06Ij4SES+OiJHq9W9yBJdLjmfW56rhdh9Bd5pyvFKMU5FCij6WXGNEWHfaJgNJX5O0qt1PziB7Lccz63M949/Pxe9OU45XinEqUui0nVxjNzTl99YkU90m+stsUfRZjmfW56rhdh9Bd5pyvFKMU5FCij6WXGNEWHfaXhlExHen+skZZK/leGZ9rhpu9xF0pynHK8U4FSmk6GPJNUaEdafWeAYl6WWfQY5n1ueq4XYfQXeacrxSjFORQoo+llxjRFjLtMczKI2bzszMutcpGdTpM7AuDFKvgpUnR1396LpNfPKaexhdt6mv67C82n6BLOlrQNvLhn6NdFayQepVsPLkqKt/w8W38L2x1gf4hdeNccLi2XzhLcdmX4fl52qiRMbXPe98PPT7r7yD4xbPqX0vs9M62tWaLz92kR8fMOBSnF+djK7btOtDfKebxjYxum4TI4fNzrYO64+2yWDQKoZ6LcU4AZ3W4efND68c41Dc+OOH2k6v+0GeYh3WH3UeYX24pJWS1kr6yc6fHME1ySD1Klh5ctTVn3j4nK6m92od1h91vkD+e+BzwA7gJOAy4Iu9DKqJBqlXwcqTo65+5LDZnLB497/eT1g8u6u/6FOsw/qj1ngGEXGMpDsj4gXjp2WJcILSS0sHqVfBypOjrn503SZu/PFDnHj4nL3+EE+xDktr2n0Gkr4PHA+sBK4DHgD+IiKOSBloXaUnAzOzEqXoMzgXeBpwDnAM8IfAG2ts+ABJ/yLpdkl3SfqzSZbZX9IVksYk3SppUY14zMwssTqPsP7XiNgGPAqcExH/OSJuqbHu7cDJEfFCYAnwKkkTi43fDDwSEYuBTwHndxd+fbkG20ghxQAmJexLihjqNNjl2E6dbZTQDFin2StFU2OO82uQzvMS4uyk4+A2kkZofYk8s3q/BfhvEbF6qn8XrftP26q3M6qfifekTgM+Wr1eCfy1JEXiZ2TkGmwjhRQDmJSwLyliqNNgl2M7dbZRQjNgnWavFE2NOc6vQTrPS4izjjq3if4O+OOIWBQRi4C300oOHUnaV9Ia4JfAtRFx64RFDgXWA0TEDmALkPTbplyDbaSQYgCTEvYlRQx1BgPKsZ0628g1cNFUpmr22inFAEw5zq9BOs9LiLOuOsngiYi4aeebiPgerTLTjiLiiYhYAswHXiLp+XsTpKSzJY1KGt24cWNX/zbXYBsppBjApIR9SRFDncGAcmynzjZyDVw0lamavXZKMQBTjvNrkM7zEuKsq04y+K6kv5X0MkkvlfQ3wA2SjpZ0dJ2NRMRm4HrgVRNmPQAsAJC0H/AMYI+bnRFxUTXk5sjcuXPrbHKXXINtpJBiAJMS9iVFDHUa7HJsp842SmgGrNPslaKpMcf5NUjneQlx1lUnGbwQ+A/An9K6v/9c4EXAJ5ji+UWS5kqaVb0+EHgF8KMJi63iqcqkM4DrUn9fkGuwjRRSDGBSwr6kiKFOg12O7dTZRgnNgHWavVI0NeY4vwbpPC8hzrp6Np6BpKOAS4F9aSWdr0TECkkrgNGIWCXpAOALtJLLw8CZETHloy72ts8g12AbKaQYwKSEfUkRQ50GuxzbqbONEpoB6zR7pWhqzHF+DdJ5XkKcKZrO5gEfB54dEa+WdCSwNCIuSRtqPW46MzPrXoqms38Avg08u3p/L/Cu6YdWnibUAg+bUmq4U8SRax2dDNN5Pkz7Ol0d+wyAORHxFUkfglYJqKQnehxXdk2pBR4mpdRwp4gj1zpS7MugGKZ9TaHOlcGvJM2mahiruoi39DSqzJpUCzwsSqnhThFHrnWk2JdBMUz7mkqdZPAeWlU//17S/6X1COt39jSqzJpUCzwsSqnhThFHrnWk2JdBMUz7mkrH20QRcZuklwJHAALuiYjHex5ZRk2qBR4WpdRwp4gj1zpS7MugGKZ9TaXtlYGkF0t6Fux6VMQxwMeAT0j6rUzxZdGkWuBhUUoNd4o4cq0jxb4MimHa11TalpZKug14eUQ8LOlE4Mu0bg8tAZ4bEWfkC/MpvSwtLaEW2HZXSg13ijhyrSPFvgyKYdrXTva6z0DS7dXjp5H0WWBjRHy0er+meuZQdu4zMDPr3nT6DPatnhcEcAqtUc52qlOSajZtKcYRyFVrnmMcilL2dZDq90vpU+m3qT7UL6f1kLqHgMeAmwAkLWbASkutTCnGEchVa55jHIpS9nWQ6vdL6VMpQdsrg4j4GPBeWh3Ix497gNw+DFhpqZUnxTgCuWrNc4xDUcq+DlL9fil9KqWYss8gIm6JiKsi4lfjpt0bEbf1PjQbZinGEchVa55jHIpS9nWQ6vdL6VMpRZ2mM7PsUowjkKvWPMc4FKXs6yDV75fSp1IKJwMrUopxBHLVmucYh6KUfR2k+v1S+lRK0bPxDHrFpaXDJcU4ArlqzXOMQ1HKvg5S/X4pfSq9Nu3xDErjZGBm1r0U4xnYkCqhNjpFDN9Z+ws+sPJ2vrP2F32NI8V2Svid2GBy85hNqoTa6BQxvPJTN3DvhlYx3BWj93PEvIP49rtflj2OFNsp4Xdig8tXBraHEmqjU8TwnbW/2JUIdrpnw6+6ukIopX6/hN+JDTYnA9tDCbXRKWK4Zu2Grqb3Ko4U2ynhd2KDzcnA9lBCbXSKGF555LyupvcqjhTbKeF3YoPNycD2UEJtdIoYTjnyWRwx76Ddph0x7yBOOfJZWeNIsZ0Sfic22Fxaam2VUBudIobvrP0F16zdwCuPnNdVIkgdR4rtlPA7sWZyn4GZmbnPwMqWom6+lNp89wBYO004N9xnYH2Tom6+lNp89wBYO005N3xlYH2Rom6+lNp89wBYO006N5wMrC9S1M2XUpvvHgBrp0nnhpOB9UWKuvlSavPdA2DtNOnccDKwvkhRN19Kbb57AKydJp0bLi21vkpRN19Kbb57AKydEs6NTqWlriayvpp98P7T/p+j0zpSbCNFHDa8mnBu9Ow2kaQFkq6XtFbSXZLOnWSZl0naImlN9XNer+IxM7P2enllsAN4b0TcJmkmsFrStRGxdsJyN0XEqT2MY+DkuLWSS4pbPKXsSwqdhrXMYZCOp9XXs2QQEQ8CD1avt0q6GzgUmJgMrAs5GrVySdEwVsq+pHDe1Xdy2S337Xq/fOlCVpz2gqwxDNLxtO5kqSaStAh4EXDrJLOXSrpd0jclPS9HPE2Vo1ErlxQNY6XsSwpjG7bulggALrv5PsY2bM0WwyAdT+tez5OBpIOBK4F3RcSjE2bfBjwnIl4IfAa4us06zpY0Kml048aNvQ24YDkatXJJ0TBWyr6ksGb95q6m98IgHU/rXk+TgaQZtBLBlyLiqxPnR8SjEbGtev0NYIakOZMsd1FEjETEyNy5c3sZctFyNGrlkqJhrJR9SWHJglldTe+FQTqe1r1eVhMJuAS4OyI+2WaZZ1XLIeklVTybehVT0+Vo1MolRcNYKfuSwuJ5M1m+dOFu05YvXZj1S+RBOp7WvZ41nUk6HrgJuBPY+efGh4GFABHxeUnvAN5Gq/LoMeA9EfH9qdbrpjNXE+3NMk3haiLrFQ9uY2ZmHtxmEDVhoIy6xjZsZeXo+qxVM2a2Jz+OomEGqQ68hLp6M2vxlUGDDFIdeAl19Wb2FCeDBhmkOvAS6urN7ClOBg0ySHXgJdTVm9lTnAwaZJDqwEuoqzezp7i0tIEGqQ68hLp6s2HgwW0GUBMGyqhr8byZTgJmBfBtoi40qb6/KbE2Jc5cfDysX3xlUFOT6vubEmtT4szFx8P6yVcGNTSpvr8psTYlzlx8PKzfnAxqaFJ9f1NibUqcufh4WL85GdTQpPr+psTalDhz8fGwfnMyqKFJ9f1NibUpcebi42H95j6DLjSpvr8psTYlzlx8PKxX3GeQUJPq+5sSa1PizMXHw/rFt4nMakgx7oJ7CKxkvjIw6yDFuAvuIbDS+crAbAopxl1wD4E1gZOB2RRSjLvgHgJrAicDsymkGHfBPQTWBE4GZlNIMe6CewisCdxnYFZDinEX3ENg/eQ+A7MEUoy74B4CK5lvE5mZmZOBmZk5GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmRg+TgaQFkq6XtFbSXZLOnWQZSbpQ0pikOyQd3at4zMysvV5eGewA3hsRRwLHAm+XdOSEZV4NHF79nA18rofxDBUPpGJm3ejZ4ygi4kHgwer1Vkl3A4cCa8ctdhpwWbQekHSLpFmSDqn+re0lD6RiZt3K8p2BpEXAi4BbJ8w6FFg/7v391TTbSx5Ixcz2Rs+TgaSDgSuBd0XEo3u5jrMljUoa3bhxY9oAB4wHUjGzvdHTZCBpBq1E8KWI+OokizwALBj3fn41bTcRcVFEjETEyNy5c3sT7IDwQCpmtjd6WU0k4BLg7oj4ZJvFVgHLq6qiY4Et/r5gejyQipntjV6OZ3Ac8IfAnZLWVNM+DCwEiIjPA98Afg8YA34NvKmH8QyNZUsO5bjFczyQipnV1stqou8B6rBMAG/vVQzDzAOpmFk33IFsZmZOBmZm5mRgZmY4GZiZGU4GZmYGqFXQ0xySNgI/62MIc4CH+rj9bjQlVseZVlPihObEOghxPici2nbtNi4Z9Juk0YgY6XccdTQlVseZVlPihObEOgxx+jaRmZk5GZiZmZPB3rio3wF0oSmxOs60mhInNCfWgY/T3xmYmZmvDMzMzMlgSpL2lfQDSV+fZN5ZkjZKWlP9vKVPMf5U0p1VDKOTzJekCyWNSbpD0tH9iLOKpVOsL5O0ZdwxPa9Pcc6StFLSjyTdLWnphPlFHNMacZZyPI8YF8MaSY9KeteEZfp+TGvGWcoxfbekuyT9UNLlkg6YMH9/SVdUx/PWarTJKfXyEdaD4FzgbuDpbeZfERHvyBhPOydFRLva4lcDh1c//xH4XPXffpkqVoCbIuLUbNFM7q+Ab0XEGZL+HfC0CfNLOaad4oQCjmdE3AMsgdYfWLQGsLpqwmJ9P6Y144Q+H1NJhwLnAEdGxGOSvgKcCfzDuMXeDDwSEYslnQmcD7xuqvX6yqANSfOB1wAX9zuWaToNuCxabgFmSTqk30GVStIzgBNpDcxERPxbRGyesFjfj2nNOEt0CvD/ImJi42jfj+kE7eIsxX7AgZL2o/VHwM8nzD8NuLR6vRI4pRpwrC0ng/Y+DbwfeHKKZU6vLmlXSlowxXK9FMA1klZLOnuS+YcC68e9v7+a1g+dYgVYKul2Sd+U9LycwVUOAzYCf1/dIrxY0kETlinhmNaJE/p/PCc6E7h8kuklHNPx2sUJfT6mEfEA8JfAfcCDtEaIvGbCYruOZ0TsALYAs6dar5PBJCSdCvwyIlZPsdjXgEURcRRwLU9l4dyOj4ijaV1mv13SiX2Ko45Osd5Gq2X+hcBngKtzB0jrL66jgc9FxIuAXwEf7EMcndSJs4TjuUt1K2sZ8I/9jKOTDnH2/ZhKeiatv/wPA54NHCTpDdNdr5PB5I4Dlkn6KfBl4GRJXxy/QERsiojt1duLgWPyhrgrjgeq//6S1v3Nl0xY5AFg/FXL/Gpadp1ijYhHI2Jb9fobwAxJczKHeT9wf0TcWr1fSetDd7wSjmnHOAs5nuO9GrgtIjZMMq+EY7pT2zgLOaYvB9ZFxMaIeBz4KvC7E5bZdTyrW0nPADZNtVIng0lExIciYn5ELKJ1uXhdROyWeSfcz1xG64vmrCQdJGnmztfAK4EfTlhsFbC8qtY4ltYl5YOZQ60Vq6Rn7byvKekltM7PKU/g1CLiF8B6SUdUk04B1k5YrO/HtE6cJRzPCf6A9rde+n5Mx2kbZyHH9D7gWElPq2I5hT0/f1YBb6xen0HrM2zKpjJXE3VB0gpgNCJWAedIWgbsAB4GzupDSPOAq6pzcz/gf0fEtyT9d4CI+DzwDeD3gDHg18Cb+hBn3VjPAN4maQfwGHBmpxO4R94JfKm6XfAT4E2FHtNOcZZyPHf+AfAK4I/GTSvumNaIs+/HNCJulbSS1i2rHcAPgIsmfD5dAnxB0hitz6czO63XHchmZubbRGZm5mRgZmY4GZiZGU4GZmaGk4GZmeFkYANM0keqJzveUT1hMumDz9R6guUeT7St8e+eXZUGTjbvBkkj1esPj5u+SNLEHhKzZJwMbCCp9TjnU4Gjq0eGvJzdn33TNxHx84g4o8aiH+68iFkaTgY2qA4BHtr5yJCIeCgifg4g6RhJ360emPftnd3k1V/lf1VdRfyw6jBF0ksk3Vw9EO7747p+JyXpnyUdVb3+gapn3ktaIemt4//Kl3SgpC+rNR7BVcCB1fS/oPVUyjWSvlStel9J/6u62rlG0oGpD5oNLycDG1TXAAsk3SvpbyS9FEDSDFoPGDsjIo4B/g742Lh/97SIWAL8cTUP4EfACdUD4c4DPt5h2zcBJ6j1mOkdtJ51BXACcOOEZd8G/Doingv8KdUzriLig8BjEbEkIv5rtezhwGcj4nnAZuD0msfCrCM/jsIGUkRsk3QMrQ/gk4ArJH0QGAWeD1xbPRpjX1qPAd7p8urf3yjp6ZJmATOBSyUdTusx3DM6bP4mWoOPrAP+GXiFpKcBh0XEPdp91KkTgQurbd4h6Y4p1rsuItZUr1cDi6ZY1qwrTgY2sCLiCeAG4AZJd9J6cNdq4K6IWNrun03y/s+B6yPitdUH+Q0dNv2vwAit5wVdC8wB3lptezq2j3v9BNUtJbMUfJvIBpJa49kePm7SEuBnwD3A3OoLZiTN0O4DlLyumn48rSdnbqH1+N+dj1M+q9O2I+LfaH1Z/V+Am2ldKfwJe94iopr2+mqbzweOGjfv8eq2llnPORnYoDqY1q2dtdWtlyOBj1Yf1GcA587M6NcAAAB6SURBVEu6HVjD7s+C/42kHwCfpzWOLMAFwP+opte9mr6J1gBJj1Wv51f/nehzwMGS7gZWsPvVw0XAHeO+QDbrGT+11Kwi6QbgTyJitN+xmOXmKwMzM/OVgZmZ+crAzMxwMjAzM5wMzMwMJwMzM8PJwMzMcDIwMzPg/wPvVb51S+TLFAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot.scatter(x='Sepal width', y='Sepal length')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 7587e1cab7b48e16b0f0ae20d48b2d3d2c9756b9 Mon Sep 17 00:00:00 2001 From: Eunsoo Cho Date: Sun, 19 Jul 2020 19:41:17 +0900 Subject: [PATCH 2/2] scatter plt --- .../.ipynb_checkpoints/HW#1-checkpoint.ipynb | 254 +++++++++++++++++- Homework/Homework#1/HW#1.ipynb | 254 +++++++++++++++++- .../.ipynb_checkpoints/HW#2-checkpoint.ipynb | 231 ++++++++++++++++ Homework/Homework#2/HW#2.ipynb | 231 ++++++++++++++++ 4 files changed, 968 insertions(+), 2 deletions(-) create mode 100644 Homework/Homework#2/.ipynb_checkpoints/HW#2-checkpoint.ipynb create mode 100644 Homework/Homework#2/HW#2.ipynb diff --git a/Homework/Homework#1/.ipynb_checkpoints/HW#1-checkpoint.ipynb b/Homework/Homework#1/.ipynb_checkpoints/HW#1-checkpoint.ipynb index 3656cbb..feca026 100644 --- a/Homework/Homework#1/.ipynb_checkpoints/HW#1-checkpoint.ipynb +++ b/Homework/Homework#1/.ipynb_checkpoints/HW#1-checkpoint.ipynb @@ -88,7 +88,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -112,6 +112,258 @@ "df.plot.scatter(x='Sepal width', y='Sepal length')" ] }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
05.13.5
14.93.0
24.73.2
34.63.1
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "0 5.1 3.5\n", + "1 4.9 3.0\n", + "2 4.7 3.2\n", + "3 4.6 3.1" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(4)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
Sepal width1.00000-0.11757
Sepal length-0.117571.00000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "Sepal width 1.00000 -0.11757\n", + "Sepal length -0.11757 1.00000" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.corr(method='pearson')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
Sepal width1.000000-0.166778
Sepal length-0.1667781.000000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "Sepal width 1.000000 -0.166778\n", + "Sepal length -0.166778 1.000000" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.corr(method='spearman')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
Sepal width1.000000-0.076997
Sepal length-0.0769971.000000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "Sepal width 1.000000 -0.076997\n", + "Sepal length -0.076997 1.000000" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.corr(method='kendall')" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/Homework/Homework#1/HW#1.ipynb b/Homework/Homework#1/HW#1.ipynb index 3656cbb..feca026 100644 --- a/Homework/Homework#1/HW#1.ipynb +++ b/Homework/Homework#1/HW#1.ipynb @@ -88,7 +88,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -112,6 +112,258 @@ "df.plot.scatter(x='Sepal width', y='Sepal length')" ] }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
05.13.5
14.93.0
24.73.2
34.63.1
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "0 5.1 3.5\n", + "1 4.9 3.0\n", + "2 4.7 3.2\n", + "3 4.6 3.1" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(4)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
Sepal width1.00000-0.11757
Sepal length-0.117571.00000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "Sepal width 1.00000 -0.11757\n", + "Sepal length -0.11757 1.00000" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.corr(method='pearson')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
Sepal width1.000000-0.166778
Sepal length-0.1667781.000000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "Sepal width 1.000000 -0.166778\n", + "Sepal length -0.166778 1.000000" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.corr(method='spearman')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
Sepal width1.000000-0.076997
Sepal length-0.0769971.000000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "Sepal width 1.000000 -0.076997\n", + "Sepal length -0.076997 1.000000" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.corr(method='kendall')" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/Homework/Homework#2/.ipynb_checkpoints/HW#2-checkpoint.ipynb b/Homework/Homework#2/.ipynb_checkpoints/HW#2-checkpoint.ipynb new file mode 100644 index 0000000..9fb6288 --- /dev/null +++ b/Homework/Homework#2/.ipynb_checkpoints/HW#2-checkpoint.ipynb @@ -0,0 +1,231 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "df = pd.read_csv('data.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
count150.000000150.000000
mean5.8433333.057333
std0.8280660.435866
min4.3000002.000000
25%5.1000002.800000
50%5.8000003.000000
75%6.4000003.300000
max7.9000004.400000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "count 150.000000 150.000000\n", + "mean 5.843333 3.057333\n", + "std 0.828066 0.435866\n", + "min 4.300000 2.000000\n", + "25% 5.100000 2.800000\n", + "50% 5.800000 3.000000\n", + "75% 6.400000 3.300000\n", + "max 7.900000 4.400000" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
Sepal width1.00000-0.11757
Sepal length-0.117571.00000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "Sepal width 1.00000 -0.11757\n", + "Sepal length -0.11757 1.00000" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.corr()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEJCAYAAAB2T0usAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df7RddXnn8fcHyABCNDbJikgSQycMFRUjXB1SfiigLq00jAOzpI6NOCodq4I/6u+1qE2XTmHqj2KtloG2oA5ig9Bo/QEjIDgC7Q0GkCB4xygBMYZAQqKYEnjmj7MTbm7uuWef3O/5nu8+5/Na6y7O2Xtn72fvuznP3fs8z/4qIjAzs+G2T78DMDOz/nMyMDMzJwMzM3MyMDMznAzMzAwnAzMzI0MykLSvpB9I+vok886StFHSmurnLb2Ox8zM9rRfhm2cC9wNPL3N/Csi4h0Z4jAzszZ6mgwkzQdeA3wMeE+Kdc6ZMycWLVqUYlVmZkNj9erVD0XE3Hbze31l8Gng/cDMKZY5XdKJwL3AuyNi/VQrXLRoEaOjowlDNDMbfJJ+NtX8nn1nIOlU4JcRsXqKxb4GLIqIo4BrgUvbrOtsSaOSRjdu3NiDaM3Mhlsvv0A+Dlgm6afAl4GTJX1x/AIRsSkitldvLwaOmWxFEXFRRIxExMjcuW2vcszMbC/1LBlExIciYn5ELALOBK6LiDeMX0bSIePeLqP1RbOZmWWWo5poN5JWAKMRsQo4R9IyYAfwMHBW7njMzAzUtEdYj4yMhL9ANjPrjqTVETHSbr47kK3xNm3bzu3rN7Np2/bOC5vZpLLfJjJL6Z/WPMAHrryDGfvsw+NPPskFpx/FsiWH9jsss8bxlYE11qZt2/nAlXfwm8efZOv2Hfzm8Sd5/5V3+ArBbC84GVhj3f/IY8zYZ/dTeMY++3D/I4/1KSKz5nIysMaa/8wDefzJJ3eb9viTTzL/mQf2KSKz5nIysMaaffD+XHD6URwwYx9m7r8fB8zYhwtOP4rZB+/f79DMGsdfIFujLVtyKMctnsP9jzzG/Gce6ERgtpecDKzxZh+8v5OA2TT5NpGZmTkZmJmZk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgbWZx6YxqwMfhyF9Y0HpjErh68MrC88MI1ZWZwMrC88MI1ZWZwMrC88MI1ZWZwMrC88MI1ZWfwFsvWNB6YxK4eTgfWVB6YxK4NvE1lb7gEwGx6+MrBJuQfAbLj4ysD24B4As+HjZGB7cA+A2fBxMrA9uAfAbPg4Gdge3ANgNnz8BbJNyj0AZsOl58lA0r7AKPBARJw6Yd7+wGXAMcAm4HUR8dNex2T1uAfAbHjkuE10LnB3m3lvBh6JiMXAp4DzM8RjQ8b9Emad9fTKQNJ84DXAx4D3TLLIacBHq9crgb+WpIiIXsZlw8P9Emb19PrK4NPA+4En28w/FFgPEBE7gC3A7B7HZEPC/RJm9fUsGUg6FfhlRKxOsK6zJY1KGt24cWOC6GwYuF/CrL5eXhkcByyT9FPgy8DJkr44YZkHgAUAkvYDnkHri+TdRMRFETESESNz587tYcg2SNwvYVZfz5JBRHwoIuZHxCLgTOC6iHjDhMVWAW+sXp9RLePvCywJ90uY1Ze9z0DSCmA0IlYBlwBfkDQGPEwraZgl434Js3rUtD/ER0ZGYnR0tN9hmJk1iqTVETHSbr4fR2E9M7ZhKytH1zO2YWu/QzGzDvw4CuuJ866+k8tuuW/X++VLF7LitBf0MSIzm4qvDCy5sQ1bd0sEAJfdfJ+vEMwK5mRgya1Zv7mr6WbWf04GltySBbO6mm5m/edkYMktnjeT5UsX7jZt+dKFLJ43s08RmVkn/gLZemLFaS9g+bGLWLN+M0sWzHIiMCuck4H1zOJ5M50EzBrCt4nMzMzJYFiNrtvEJ6+5h9F1ezwXsHE8eI2VLsU52uvz3LeJhtAbLr6F7421ksCF141xwuLZfOEtx/Y5qr3jwWusdCnO0Rznua8Mhszouk27EsFON41tauQVggevsdKlOEdznedOBkPmxh8/1NX0knnwGitdinM013nuZDBkTjx8TlfTS+bBa6x0Kc7RXOe5k8GQGTlsNics3n2Y6RMWz2bksOYNPe3Ba6x0Kc7RXOe5xzMYUqPrNnHjjx/ixMPnNDIRjLdp23YPXmNFS3GOTncdncYzcDIwMxsCHtzGJpWj7tn1/2bN4T6DIZSj7tn1/2bN4iuDIZOj7tn1/2bN42QwZHLUPbv+36x5nAyGTI66Z9f/mzWPk8GQyVH37Pp/s+ZxaemQylH37Pp/s3J0Ki11NdGQmn3w/tP+gO60jhTbMLM8fJsosRy19XW24Rp/GwY+z9PxlUFCOWrr62zDNf42DHyep+Urg0Ry1NbX2YZr/G0Y+DxPz8kgkRy19XW24Rp/GwY+z9NzMkgkR219nW24xt+Ggc/z9JwMEslRW19nG67xt2Hg8zw99xkklqO2vs42XONvw8DneX3T7jOQdBzwUeA51fICIiJ+O1WQgyRHbX2dbbjG34aBz/N06twmugT4JHA88GJgpPrvlCQdIOlfJN0u6S5JfzbJMmdJ2ihpTfXzlm53wCY3tmErK0fXM7Zh617Nh3J6Jsys9+r0GWyJiG/uxbq3AydHxDZJM4DvSfpmRNwyYbkrIuIde7F+a+O8q+/kslvu2/V++dKFrDjtBbXnQzk9E2aWR9srA0lHSzoauF7S/5S0dOe0avqUomVb9XZG9dOsLygaaGzD1t0+6AEuu/m+XVcAneZDOT0TZpbPVFcGn5jwfvwXDwGc3GnlkvYFVgOLgc9GxK2TLHa6pBOBe4F3R8T6SdZzNnA2wMKFCzttdqitWb+57fTF82Z2nA9P1XD/hqdK93bWcKe6P5tjG2ZWX9tkEBEnAUj67Yj4yfh5kmp9eRwRTwBLJM0CrpL0/Ij44bhFvgZcHhHbJf0RcCmTJJmIuAi4CFrVRHW2PayWLJg15fRO86Gcngkzy6fOF8grJ5n2j91sJCI2A9cDr5owfVNE7LwvcDFwTDfrtT0tnjeT5Ut3v3pavnThrr/6O82HcnomzCyftn0Gkn4HeB5wAfC+cbOeDrwvIp435YqlucDjEbFZ0oHANcD5EfH1ccscEhEPVq9fC3wgIo6dar2l9xmUYmzDVtas38ySBbN2+6CvOx/K6Zkws+mbTp/BEcCpwCzg98dN3wq8tca2DwEurb432Af4SkR8XdIKYDQiVgHnSFoG7AAeBs6qsV6rYfG8mW0/5OvMh3J6Jsys9zp2IEtaGhE3Z4qnI18ZmJl1L8VIZ6+X9AcTpm2h9df9P00rugGU4rZHnVs4011HjkdapNiPUuQYJjTVdsz2Rp1ksD/wOzz1pfHpwDrghZJOioh39Sq4pknRRFWnIWy668gxQE6K/ShFit+rByWy0tWpJjoKOCkiPhMRnwFeTis5vBZ4ZS+Da5IUTVR1GsKmu44cA+Sk2I9SpPi9elAia4I6yeCZwMHj3h8E/FbVQ+AztZJisI2pGsJSrSPHADkp9qMUKX6vHpTImqDObaILgDWSbqD1xNITgY9LOgj4Pz2MrVFSNFHVaQib7jpyDJCTYj9KkeL36kGJrAk6XhlExCXA7wJXA1cBx0fExRHxq4h439T/enikaKKq0xA23XXkGCAnxX6UIsXv1YMSWRPUGtxG0qE8NZ4BABFxYw/jaqv00lJXE9WPoUlcTWRN16m0tE6fwfnA64C7YNdTxSIiliWLsgulJwMzsxKl6DP4T8AR454hZA3Q6S9M/wVaphKupkqIwfKrkwx+QmssAieDhuhUr+569jKV0JtRQgzWH3VKS39Nq5robyVduPOn14HZ3ulUr+569jKV0JtRQgzWP3WuDFZVP9YAnQaN8aAyZaoz6NAwxGD90zEZRMSl1SOoF0bEPRlismnoVK/uevYyldCbUUIM1j8dbxNJ+n1gDfCt6v0SSb5SKFSnenXXs5ephN6MEmKw/qlTWrqa1lCUN0TEi6ppP4yI52eIbw8uLa3H1UTNVEIlTwkxWHopSksfj4gtksZPe7LdwlaGToPGeFCZMtUZdGgYYrD86lQT3SXp9cC+kg6X9Bng+z2Oqy82bdvO7es3T6uyptM6xjZsZeXo+p5XaKTYl2HSlOPV6fzJtR+dtlMnjhz/v1l9da4M3gl8hFafweXAt4E/72VQ/ZDjmfW5arjdR9CdphyvFONUpJCijyXXGBFWX50H1f06Ij4SES+OiJHq9W9yBJdLjmfW56rhdh9Bd5pyvFKMU5FCij6WXGNEWHfaJgNJX5O0qt1PziB7Lccz63M949/Pxe9OU45XinEqUui0nVxjNzTl99YkU90m+stsUfRZjmfW56rhdh9Bd5pyvFKMU5FCij6WXGNEWHfaXhlExHen+skZZK/leGZ9rhpu9xF0pynHK8U4FSmk6GPJNUaEdafWeAYl6WWfQY5n1ueq4XYfQXeacrxSjFORQoo+llxjRFjLtMczKI2bzszMutcpGdTpM7AuDFKvgpUnR1396LpNfPKaexhdt6mv67C82n6BLOlrQNvLhn6NdFayQepVsPLkqKt/w8W38L2x1gf4hdeNccLi2XzhLcdmX4fl52qiRMbXPe98PPT7r7yD4xbPqX0vs9M62tWaLz92kR8fMOBSnF+djK7btOtDfKebxjYxum4TI4fNzrYO64+2yWDQKoZ6LcU4AZ3W4efND68c41Dc+OOH2k6v+0GeYh3WH3UeYX24pJWS1kr6yc6fHME1ySD1Klh5ctTVn3j4nK6m92od1h91vkD+e+BzwA7gJOAy4Iu9DKqJBqlXwcqTo65+5LDZnLB497/eT1g8u6u/6FOsw/qj1ngGEXGMpDsj4gXjp2WJcILSS0sHqVfBypOjrn503SZu/PFDnHj4nL3+EE+xDktr2n0Gkr4PHA+sBK4DHgD+IiKOSBloXaUnAzOzEqXoMzgXeBpwDnAM8IfAG2ts+ABJ/yLpdkl3SfqzSZbZX9IVksYk3SppUY14zMwssTqPsP7XiNgGPAqcExH/OSJuqbHu7cDJEfFCYAnwKkkTi43fDDwSEYuBTwHndxd+fbkG20ghxQAmJexLihjqNNjl2E6dbZTQDFin2StFU2OO82uQzvMS4uyk4+A2kkZofYk8s3q/BfhvEbF6qn8XrftP26q3M6qfifekTgM+Wr1eCfy1JEXiZ2TkGmwjhRQDmJSwLyliqNNgl2M7dbZRQjNgnWavFE2NOc6vQTrPS4izjjq3if4O+OOIWBQRi4C300oOHUnaV9Ia4JfAtRFx64RFDgXWA0TEDmALkPTbplyDbaSQYgCTEvYlRQx1BgPKsZ0628g1cNFUpmr22inFAEw5zq9BOs9LiLOuOsngiYi4aeebiPgerTLTjiLiiYhYAswHXiLp+XsTpKSzJY1KGt24cWNX/zbXYBsppBjApIR9SRFDncGAcmynzjZyDVw0lamavXZKMQBTjvNrkM7zEuKsq04y+K6kv5X0MkkvlfQ3wA2SjpZ0dJ2NRMRm4HrgVRNmPQAsAJC0H/AMYI+bnRFxUTXk5sjcuXPrbHKXXINtpJBiAJMS9iVFDHUa7HJsp842SmgGrNPslaKpMcf5NUjneQlx1lUnGbwQ+A/An9K6v/9c4EXAJ5ji+UWS5kqaVb0+EHgF8KMJi63iqcqkM4DrUn9fkGuwjRRSDGBSwr6kiKFOg12O7dTZRgnNgHWavVI0NeY4vwbpPC8hzrp6Np6BpKOAS4F9aSWdr0TECkkrgNGIWCXpAOALtJLLw8CZETHloy72ts8g12AbKaQYwKSEfUkRQ50GuxzbqbONEpoB6zR7pWhqzHF+DdJ5XkKcKZrO5gEfB54dEa+WdCSwNCIuSRtqPW46MzPrXoqms38Avg08u3p/L/Cu6YdWnibUAg+bUmq4U8SRax2dDNN5Pkz7Ol0d+wyAORHxFUkfglYJqKQnehxXdk2pBR4mpdRwp4gj1zpS7MugGKZ9TaHOlcGvJM2mahiruoi39DSqzJpUCzwsSqnhThFHrnWk2JdBMUz7mkqdZPAeWlU//17S/6X1COt39jSqzJpUCzwsSqnhThFHrnWk2JdBMUz7mkrH20QRcZuklwJHAALuiYjHex5ZRk2qBR4WpdRwp4gj1zpS7MugGKZ9TaXtlYGkF0t6Fux6VMQxwMeAT0j6rUzxZdGkWuBhUUoNd4o4cq0jxb4MimHa11TalpZKug14eUQ8LOlE4Mu0bg8tAZ4bEWfkC/MpvSwtLaEW2HZXSg13ijhyrSPFvgyKYdrXTva6z0DS7dXjp5H0WWBjRHy0er+meuZQdu4zMDPr3nT6DPatnhcEcAqtUc52qlOSajZtKcYRyFVrnmMcilL2dZDq90vpU+m3qT7UL6f1kLqHgMeAmwAkLWbASkutTCnGEchVa55jHIpS9nWQ6vdL6VMpQdsrg4j4GPBeWh3Ix497gNw+DFhpqZUnxTgCuWrNc4xDUcq+DlL9fil9KqWYss8gIm6JiKsi4lfjpt0bEbf1PjQbZinGEchVa55jHIpS9nWQ6vdL6VMpRZ2mM7PsUowjkKvWPMc4FKXs6yDV75fSp1IKJwMrUopxBHLVmucYh6KUfR2k+v1S+lRK0bPxDHrFpaXDJcU4ArlqzXOMQ1HKvg5S/X4pfSq9Nu3xDErjZGBm1r0U4xnYkCqhNjpFDN9Z+ws+sPJ2vrP2F32NI8V2Svid2GBy85hNqoTa6BQxvPJTN3DvhlYx3BWj93PEvIP49rtflj2OFNsp4Xdig8tXBraHEmqjU8TwnbW/2JUIdrpnw6+6ukIopX6/hN+JDTYnA9tDCbXRKWK4Zu2Grqb3Ko4U2ynhd2KDzcnA9lBCbXSKGF555LyupvcqjhTbKeF3YoPNycD2UEJtdIoYTjnyWRwx76Ddph0x7yBOOfJZWeNIsZ0Sfic22Fxaam2VUBudIobvrP0F16zdwCuPnNdVIkgdR4rtlPA7sWZyn4GZmbnPwMqWom6+lNp89wBYO004N9xnYH2Tom6+lNp89wBYO005N3xlYH2Rom6+lNp89wBYO006N5wMrC9S1M2XUpvvHgBrp0nnhpOB9UWKuvlSavPdA2DtNOnccDKwvkhRN19Kbb57AKydJp0bLi21vkpRN19Kbb57AKydEs6NTqWlriayvpp98P7T/p+j0zpSbCNFHDa8mnBu9Ow2kaQFkq6XtFbSXZLOnWSZl0naImlN9XNer+IxM7P2enllsAN4b0TcJmkmsFrStRGxdsJyN0XEqT2MY+DkuLWSS4pbPKXsSwqdhrXMYZCOp9XXs2QQEQ8CD1avt0q6GzgUmJgMrAs5GrVySdEwVsq+pHDe1Xdy2S337Xq/fOlCVpz2gqwxDNLxtO5kqSaStAh4EXDrJLOXSrpd0jclPS9HPE2Vo1ErlxQNY6XsSwpjG7bulggALrv5PsY2bM0WwyAdT+tez5OBpIOBK4F3RcSjE2bfBjwnIl4IfAa4us06zpY0Kml048aNvQ24YDkatXJJ0TBWyr6ksGb95q6m98IgHU/rXk+TgaQZtBLBlyLiqxPnR8SjEbGtev0NYIakOZMsd1FEjETEyNy5c3sZctFyNGrlkqJhrJR9SWHJglldTe+FQTqe1r1eVhMJuAS4OyI+2WaZZ1XLIeklVTybehVT0+Vo1MolRcNYKfuSwuJ5M1m+dOFu05YvXZj1S+RBOp7WvZ41nUk6HrgJuBPY+efGh4GFABHxeUnvAN5Gq/LoMeA9EfH9qdbrpjNXE+3NMk3haiLrFQ9uY2ZmHtxmEDVhoIy6xjZsZeXo+qxVM2a2Jz+OomEGqQ68hLp6M2vxlUGDDFIdeAl19Wb2FCeDBhmkOvAS6urN7ClOBg0ySHXgJdTVm9lTnAwaZJDqwEuoqzezp7i0tIEGqQ68hLp6s2HgwW0GUBMGyqhr8byZTgJmBfBtoi40qb6/KbE2Jc5cfDysX3xlUFOT6vubEmtT4szFx8P6yVcGNTSpvr8psTYlzlx8PKzfnAxqaFJ9f1NibUqcufh4WL85GdTQpPr+psTalDhz8fGwfnMyqKFJ9f1NibUpcebi42H95j6DLjSpvr8psTYlzlx8PKxX3GeQUJPq+5sSa1PizMXHw/rFt4nMakgx7oJ7CKxkvjIw6yDFuAvuIbDS+crAbAopxl1wD4E1gZOB2RRSjLvgHgJrAicDsymkGHfBPQTWBE4GZlNIMe6CewisCdxnYFZDinEX3ENg/eQ+A7MEUoy74B4CK5lvE5mZmZOBmZk5GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmRg+TgaQFkq6XtFbSXZLOnWQZSbpQ0pikOyQd3at4zMysvV5eGewA3hsRRwLHAm+XdOSEZV4NHF79nA18rofxDBUPpGJm3ejZ4ygi4kHgwer1Vkl3A4cCa8ctdhpwWbQekHSLpFmSDqn+re0lD6RiZt3K8p2BpEXAi4BbJ8w6FFg/7v391TTbSx5Ixcz2Rs+TgaSDgSuBd0XEo3u5jrMljUoa3bhxY9oAB4wHUjGzvdHTZCBpBq1E8KWI+OokizwALBj3fn41bTcRcVFEjETEyNy5c3sT7IDwQCpmtjd6WU0k4BLg7oj4ZJvFVgHLq6qiY4Et/r5gejyQipntjV6OZ3Ac8IfAnZLWVNM+DCwEiIjPA98Afg8YA34NvKmH8QyNZUsO5bjFczyQipnV1stqou8B6rBMAG/vVQzDzAOpmFk33IFsZmZOBmZm5mRgZmY4GZiZGU4GZmYGqFXQ0xySNgI/62MIc4CH+rj9bjQlVseZVlPihObEOghxPici2nbtNi4Z9Juk0YgY6XccdTQlVseZVlPihObEOgxx+jaRmZk5GZiZmZPB3rio3wF0oSmxOs60mhInNCfWgY/T3xmYmZmvDMzMzMlgSpL2lfQDSV+fZN5ZkjZKWlP9vKVPMf5U0p1VDKOTzJekCyWNSbpD0tH9iLOKpVOsL5O0ZdwxPa9Pcc6StFLSjyTdLWnphPlFHNMacZZyPI8YF8MaSY9KeteEZfp+TGvGWcoxfbekuyT9UNLlkg6YMH9/SVdUx/PWarTJKfXyEdaD4FzgbuDpbeZfERHvyBhPOydFRLva4lcDh1c//xH4XPXffpkqVoCbIuLUbNFM7q+Ab0XEGZL+HfC0CfNLOaad4oQCjmdE3AMsgdYfWLQGsLpqwmJ9P6Y144Q+H1NJhwLnAEdGxGOSvgKcCfzDuMXeDDwSEYslnQmcD7xuqvX6yqANSfOB1wAX9zuWaToNuCxabgFmSTqk30GVStIzgBNpDcxERPxbRGyesFjfj2nNOEt0CvD/ImJi42jfj+kE7eIsxX7AgZL2o/VHwM8nzD8NuLR6vRI4pRpwrC0ng/Y+DbwfeHKKZU6vLmlXSlowxXK9FMA1klZLOnuS+YcC68e9v7+a1g+dYgVYKul2Sd+U9LycwVUOAzYCf1/dIrxY0kETlinhmNaJE/p/PCc6E7h8kuklHNPx2sUJfT6mEfEA8JfAfcCDtEaIvGbCYruOZ0TsALYAs6dar5PBJCSdCvwyIlZPsdjXgEURcRRwLU9l4dyOj4ijaV1mv13SiX2Ko45Osd5Gq2X+hcBngKtzB0jrL66jgc9FxIuAXwEf7EMcndSJs4TjuUt1K2sZ8I/9jKOTDnH2/ZhKeiatv/wPA54NHCTpDdNdr5PB5I4Dlkn6KfBl4GRJXxy/QERsiojt1duLgWPyhrgrjgeq//6S1v3Nl0xY5AFg/FXL/Gpadp1ijYhHI2Jb9fobwAxJczKHeT9wf0TcWr1fSetDd7wSjmnHOAs5nuO9GrgtIjZMMq+EY7pT2zgLOaYvB9ZFxMaIeBz4KvC7E5bZdTyrW0nPADZNtVIng0lExIciYn5ELKJ1uXhdROyWeSfcz1xG64vmrCQdJGnmztfAK4EfTlhsFbC8qtY4ltYl5YOZQ60Vq6Rn7byvKekltM7PKU/g1CLiF8B6SUdUk04B1k5YrO/HtE6cJRzPCf6A9rde+n5Mx2kbZyHH9D7gWElPq2I5hT0/f1YBb6xen0HrM2zKpjJXE3VB0gpgNCJWAedIWgbsAB4GzupDSPOAq6pzcz/gf0fEtyT9d4CI+DzwDeD3gDHg18Cb+hBn3VjPAN4maQfwGHBmpxO4R94JfKm6XfAT4E2FHtNOcZZyPHf+AfAK4I/GTSvumNaIs+/HNCJulbSS1i2rHcAPgIsmfD5dAnxB0hitz6czO63XHchmZubbRGZm5mRgZmY4GZiZGU4GZmaGk4GZmeFkYANM0keqJzveUT1hMumDz9R6guUeT7St8e+eXZUGTjbvBkkj1esPj5u+SNLEHhKzZJwMbCCp9TjnU4Gjq0eGvJzdn33TNxHx84g4o8aiH+68iFkaTgY2qA4BHtr5yJCIeCgifg4g6RhJ360emPftnd3k1V/lf1VdRfyw6jBF0ksk3Vw9EO7747p+JyXpnyUdVb3+gapn3ktaIemt4//Kl3SgpC+rNR7BVcCB1fS/oPVUyjWSvlStel9J/6u62rlG0oGpD5oNLycDG1TXAAsk3SvpbyS9FEDSDFoPGDsjIo4B/g742Lh/97SIWAL8cTUP4EfACdUD4c4DPt5h2zcBJ6j1mOkdtJ51BXACcOOEZd8G/Doingv8KdUzriLig8BjEbEkIv5rtezhwGcj4nnAZuD0msfCrCM/jsIGUkRsk3QMrQ/gk4ArJH0QGAWeD1xbPRpjX1qPAd7p8urf3yjp6ZJmATOBSyUdTusx3DM6bP4mWoOPrAP+GXiFpKcBh0XEPdp91KkTgQurbd4h6Y4p1rsuItZUr1cDi6ZY1qwrTgY2sCLiCeAG4AZJd9J6cNdq4K6IWNrun03y/s+B6yPitdUH+Q0dNv2vwAit5wVdC8wB3lptezq2j3v9BNUtJbMUfJvIBpJa49kePm7SEuBnwD3A3OoLZiTN0O4DlLyumn48rSdnbqH1+N+dj1M+q9O2I+LfaH1Z/V+Am2ldKfwJe94iopr2+mqbzweOGjfv8eq2llnPORnYoDqY1q2dtdWtlyOBj1Yf1GcA587M6NcAAAB6SURBVEu6HVjD7s+C/42kHwCfpzWOLMAFwP+opte9mr6J1gBJj1Wv51f/nehzwMGS7gZWsPvVw0XAHeO+QDbrGT+11Kwi6QbgTyJitN+xmOXmKwMzM/OVgZmZ+crAzMxwMjAzM5wMzMwMJwMzM8PJwMzMcDIwMzPg/wPvVb51S+TLFAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot.scatter(x='Sepal width', y='Sepal length')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Homework/Homework#2/HW#2.ipynb b/Homework/Homework#2/HW#2.ipynb new file mode 100644 index 0000000..9fb6288 --- /dev/null +++ b/Homework/Homework#2/HW#2.ipynb @@ -0,0 +1,231 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "df = pd.read_csv('data.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
count150.000000150.000000
mean5.8433333.057333
std0.8280660.435866
min4.3000002.000000
25%5.1000002.800000
50%5.8000003.000000
75%6.4000003.300000
max7.9000004.400000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "count 150.000000 150.000000\n", + "mean 5.843333 3.057333\n", + "std 0.828066 0.435866\n", + "min 4.300000 2.000000\n", + "25% 5.100000 2.800000\n", + "50% 5.800000 3.000000\n", + "75% 6.400000 3.300000\n", + "max 7.900000 4.400000" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sepal widthSepal length
Sepal width1.00000-0.11757
Sepal length-0.117571.00000
\n", + "
" + ], + "text/plain": [ + " Sepal width Sepal length\n", + "Sepal width 1.00000 -0.11757\n", + "Sepal length -0.11757 1.00000" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.corr()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEJCAYAAAB2T0usAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df7RddXnn8fcHyABCNDbJikgSQycMFRUjXB1SfiigLq00jAOzpI6NOCodq4I/6u+1qE2XTmHqj2KtloG2oA5ig9Bo/QEjIDgC7Q0GkCB4xygBMYZAQqKYEnjmj7MTbm7uuWef3O/5nu8+5/Na6y7O2Xtn72fvuznP3fs8z/4qIjAzs+G2T78DMDOz/nMyMDMzJwMzM3MyMDMznAzMzAwnAzMzI0MykLSvpB9I+vok886StFHSmurnLb2Ox8zM9rRfhm2cC9wNPL3N/Csi4h0Z4jAzszZ6mgwkzQdeA3wMeE+Kdc6ZMycWLVqUYlVmZkNj9erVD0XE3Hbze31l8Gng/cDMKZY5XdKJwL3AuyNi/VQrXLRoEaOjowlDNDMbfJJ+NtX8nn1nIOlU4JcRsXqKxb4GLIqIo4BrgUvbrOtsSaOSRjdu3NiDaM3Mhlsvv0A+Dlgm6afAl4GTJX1x/AIRsSkitldvLwaOmWxFEXFRRIxExMjcuW2vcszMbC/1LBlExIciYn5ELALOBK6LiDeMX0bSIePeLqP1RbOZmWWWo5poN5JWAKMRsQo4R9IyYAfwMHBW7njMzAzUtEdYj4yMhL9ANjPrjqTVETHSbr47kK3xNm3bzu3rN7Np2/bOC5vZpLLfJjJL6Z/WPMAHrryDGfvsw+NPPskFpx/FsiWH9jsss8bxlYE11qZt2/nAlXfwm8efZOv2Hfzm8Sd5/5V3+ArBbC84GVhj3f/IY8zYZ/dTeMY++3D/I4/1KSKz5nIysMaa/8wDefzJJ3eb9viTTzL/mQf2KSKz5nIysMaaffD+XHD6URwwYx9m7r8fB8zYhwtOP4rZB+/f79DMGsdfIFujLVtyKMctnsP9jzzG/Gce6ERgtpecDKzxZh+8v5OA2TT5NpGZmTkZmJmZk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgbWZx6YxqwMfhyF9Y0HpjErh68MrC88MI1ZWZwMrC88MI1ZWZwMrC88MI1ZWZwMrC88MI1ZWfwFsvWNB6YxK4eTgfWVB6YxK4NvE1lb7gEwGx6+MrBJuQfAbLj4ysD24B4As+HjZGB7cA+A2fBxMrA9uAfAbPg4Gdge3ANgNnz8BbJNyj0AZsOl58lA0r7AKPBARJw6Yd7+wGXAMcAm4HUR8dNex2T1uAfAbHjkuE10LnB3m3lvBh6JiMXAp4DzM8RjQ8b9Emad9fTKQNJ84DXAx4D3TLLIacBHq9crgb+WpIiIXsZlw8P9Emb19PrK4NPA+4En28w/FFgPEBE7gC3A7B7HZEPC/RJm9fUsGUg6FfhlRKxOsK6zJY1KGt24cWOC6GwYuF/CrL5eXhkcByyT9FPgy8DJkr44YZkHgAUAkvYDnkHri+TdRMRFETESESNz587tYcg2SNwvYVZfz5JBRHwoIuZHxCLgTOC6iHjDhMVWAW+sXp9RLePvCywJ90uY1Ze9z0DSCmA0IlYBlwBfkDQGPEwraZgl434Js3rUtD/ER0ZGYnR0tN9hmJk1iqTVETHSbr4fR2E9M7ZhKytH1zO2YWu/QzGzDvw4CuuJ866+k8tuuW/X++VLF7LitBf0MSIzm4qvDCy5sQ1bd0sEAJfdfJ+vEMwK5mRgya1Zv7mr6WbWf04GltySBbO6mm5m/edkYMktnjeT5UsX7jZt+dKFLJ43s08RmVkn/gLZemLFaS9g+bGLWLN+M0sWzHIiMCuck4H1zOJ5M50EzBrCt4nMzMzJYFiNrtvEJ6+5h9F1ezwXsHE8eI2VLsU52uvz3LeJhtAbLr6F7421ksCF141xwuLZfOEtx/Y5qr3jwWusdCnO0Rznua8Mhszouk27EsFON41tauQVggevsdKlOEdznedOBkPmxh8/1NX0knnwGitdinM013nuZDBkTjx8TlfTS+bBa6x0Kc7RXOe5k8GQGTlsNics3n2Y6RMWz2bksOYNPe3Ba6x0Kc7RXOe5xzMYUqPrNnHjjx/ixMPnNDIRjLdp23YPXmNFS3GOTncdncYzcDIwMxsCHtzGJpWj7tn1/2bN4T6DIZSj7tn1/2bN4iuDIZOj7tn1/2bN42QwZHLUPbv+36x5nAyGTI66Z9f/mzWPk8GQyVH37Pp/s+ZxaemQylH37Pp/s3J0Ki11NdGQmn3w/tP+gO60jhTbMLM8fJsosRy19XW24Rp/GwY+z9PxlUFCOWrr62zDNf42DHyep+Urg0Ry1NbX2YZr/G0Y+DxPz8kgkRy19XW24Rp/GwY+z9NzMkgkR219nW24xt+Ggc/z9JwMEslRW19nG67xt2Hg8zw99xkklqO2vs42XONvw8DneX3T7jOQdBzwUeA51fICIiJ+O1WQgyRHbX2dbbjG34aBz/N06twmugT4JHA88GJgpPrvlCQdIOlfJN0u6S5JfzbJMmdJ2ihpTfXzlm53wCY3tmErK0fXM7Zh617Nh3J6Jsys9+r0GWyJiG/uxbq3AydHxDZJM4DvSfpmRNwyYbkrIuIde7F+a+O8q+/kslvu2/V++dKFrDjtBbXnQzk9E2aWR9srA0lHSzoauF7S/5S0dOe0avqUomVb9XZG9dOsLygaaGzD1t0+6AEuu/m+XVcAneZDOT0TZpbPVFcGn5jwfvwXDwGc3GnlkvYFVgOLgc9GxK2TLHa6pBOBe4F3R8T6SdZzNnA2wMKFCzttdqitWb+57fTF82Z2nA9P1XD/hqdK93bWcKe6P5tjG2ZWX9tkEBEnAUj67Yj4yfh5kmp9eRwRTwBLJM0CrpL0/Ij44bhFvgZcHhHbJf0RcCmTJJmIuAi4CFrVRHW2PayWLJg15fRO86Gcngkzy6fOF8grJ5n2j91sJCI2A9cDr5owfVNE7LwvcDFwTDfrtT0tnjeT5Ut3v3pavnThrr/6O82HcnomzCyftn0Gkn4HeB5wAfC+cbOeDrwvIp435YqlucDjEbFZ0oHANcD5EfH1ccscEhEPVq9fC3wgIo6dar2l9xmUYmzDVtas38ySBbN2+6CvOx/K6Zkws+mbTp/BEcCpwCzg98dN3wq8tca2DwEurb432Af4SkR8XdIKYDQiVgHnSFoG7AAeBs6qsV6rYfG8mW0/5OvMh3J6Jsys9zp2IEtaGhE3Z4qnI18ZmJl1L8VIZ6+X9AcTpm2h9df9P00rugGU4rZHnVs4011HjkdapNiPUuQYJjTVdsz2Rp1ksD/wOzz1pfHpwDrghZJOioh39Sq4pknRRFWnIWy668gxQE6K/ShFit+rByWy0tWpJjoKOCkiPhMRnwFeTis5vBZ4ZS+Da5IUTVR1GsKmu44cA+Sk2I9SpPi9elAia4I6yeCZwMHj3h8E/FbVQ+AztZJisI2pGsJSrSPHADkp9qMUKX6vHpTImqDObaILgDWSbqD1xNITgY9LOgj4Pz2MrVFSNFHVaQib7jpyDJCTYj9KkeL36kGJrAk6XhlExCXA7wJXA1cBx0fExRHxq4h439T/enikaKKq0xA23XXkGCAnxX6UIsXv1YMSWRPUGtxG0qE8NZ4BABFxYw/jaqv00lJXE9WPoUlcTWRN16m0tE6fwfnA64C7YNdTxSIiliWLsgulJwMzsxKl6DP4T8AR454hZA3Q6S9M/wVaphKupkqIwfKrkwx+QmssAieDhuhUr+569jKV0JtRQgzWH3VKS39Nq5robyVduPOn14HZ3ulUr+569jKV0JtRQgzWP3WuDFZVP9YAnQaN8aAyZaoz6NAwxGD90zEZRMSl1SOoF0bEPRlismnoVK/uevYyldCbUUIM1j8dbxNJ+n1gDfCt6v0SSb5SKFSnenXXs5ephN6MEmKw/qlTWrqa1lCUN0TEi6ppP4yI52eIbw8uLa3H1UTNVEIlTwkxWHopSksfj4gtksZPe7LdwlaGToPGeFCZMtUZdGgYYrD86lQT3SXp9cC+kg6X9Bng+z2Oqy82bdvO7es3T6uyptM6xjZsZeXo+p5XaKTYl2HSlOPV6fzJtR+dtlMnjhz/v1l9da4M3gl8hFafweXAt4E/72VQ/ZDjmfW5arjdR9CdphyvFONUpJCijyXXGBFWX50H1f06Ij4SES+OiJHq9W9yBJdLjmfW56rhdh9Bd5pyvFKMU5FCij6WXGNEWHfaJgNJX5O0qt1PziB7Lccz63M949/Pxe9OU45XinEqUui0nVxjNzTl99YkU90m+stsUfRZjmfW56rhdh9Bd5pyvFKMU5FCij6WXGNEWHfaXhlExHen+skZZK/leGZ9rhpu9xF0pynHK8U4FSmk6GPJNUaEdafWeAYl6WWfQY5n1ueq4XYfQXeacrxSjFORQoo+llxjRFjLtMczKI2bzszMutcpGdTpM7AuDFKvgpUnR1396LpNfPKaexhdt6mv67C82n6BLOlrQNvLhn6NdFayQepVsPLkqKt/w8W38L2x1gf4hdeNccLi2XzhLcdmX4fl52qiRMbXPe98PPT7r7yD4xbPqX0vs9M62tWaLz92kR8fMOBSnF+djK7btOtDfKebxjYxum4TI4fNzrYO64+2yWDQKoZ6LcU4AZ3W4efND68c41Dc+OOH2k6v+0GeYh3WH3UeYX24pJWS1kr6yc6fHME1ySD1Klh5ctTVn3j4nK6m92od1h91vkD+e+BzwA7gJOAy4Iu9DKqJBqlXwcqTo65+5LDZnLB497/eT1g8u6u/6FOsw/qj1ngGEXGMpDsj4gXjp2WJcILSS0sHqVfBypOjrn503SZu/PFDnHj4nL3+EE+xDktr2n0Gkr4PHA+sBK4DHgD+IiKOSBloXaUnAzOzEqXoMzgXeBpwDnAM8IfAG2ts+ABJ/yLpdkl3SfqzSZbZX9IVksYk3SppUY14zMwssTqPsP7XiNgGPAqcExH/OSJuqbHu7cDJEfFCYAnwKkkTi43fDDwSEYuBTwHndxd+fbkG20ghxQAmJexLihjqNNjl2E6dbZTQDFin2StFU2OO82uQzvMS4uyk4+A2kkZofYk8s3q/BfhvEbF6qn8XrftP26q3M6qfifekTgM+Wr1eCfy1JEXiZ2TkGmwjhRQDmJSwLyliqNNgl2M7dbZRQjNgnWavFE2NOc6vQTrPS4izjjq3if4O+OOIWBQRi4C300oOHUnaV9Ia4JfAtRFx64RFDgXWA0TEDmALkPTbplyDbaSQYgCTEvYlRQx1BgPKsZ0628g1cNFUpmr22inFAEw5zq9BOs9LiLOuOsngiYi4aeebiPgerTLTjiLiiYhYAswHXiLp+XsTpKSzJY1KGt24cWNX/zbXYBsppBjApIR9SRFDncGAcmynzjZyDVw0lamavXZKMQBTjvNrkM7zEuKsq04y+K6kv5X0MkkvlfQ3wA2SjpZ0dJ2NRMRm4HrgVRNmPQAsAJC0H/AMYI+bnRFxUTXk5sjcuXPrbHKXXINtpJBiAJMS9iVFDHUa7HJsp842SmgGrNPslaKpMcf5NUjneQlx1lUnGbwQ+A/An9K6v/9c4EXAJ5ji+UWS5kqaVb0+EHgF8KMJi63iqcqkM4DrUn9fkGuwjRRSDGBSwr6kiKFOg12O7dTZRgnNgHWavVI0NeY4vwbpPC8hzrp6Np6BpKOAS4F9aSWdr0TECkkrgNGIWCXpAOALtJLLw8CZETHloy72ts8g12AbKaQYwKSEfUkRQ50GuxzbqbONEpoB6zR7pWhqzHF+DdJ5XkKcKZrO5gEfB54dEa+WdCSwNCIuSRtqPW46MzPrXoqms38Avg08u3p/L/Cu6YdWnibUAg+bUmq4U8SRax2dDNN5Pkz7Ol0d+wyAORHxFUkfglYJqKQnehxXdk2pBR4mpdRwp4gj1zpS7MugGKZ9TaHOlcGvJM2mahiruoi39DSqzJpUCzwsSqnhThFHrnWk2JdBMUz7mkqdZPAeWlU//17S/6X1COt39jSqzJpUCzwsSqnhThFHrnWk2JdBMUz7mkrH20QRcZuklwJHAALuiYjHex5ZRk2qBR4WpdRwp4gj1zpS7MugGKZ9TaXtlYGkF0t6Fux6VMQxwMeAT0j6rUzxZdGkWuBhUUoNd4o4cq0jxb4MimHa11TalpZKug14eUQ8LOlE4Mu0bg8tAZ4bEWfkC/MpvSwtLaEW2HZXSg13ijhyrSPFvgyKYdrXTva6z0DS7dXjp5H0WWBjRHy0er+meuZQdu4zMDPr3nT6DPatnhcEcAqtUc52qlOSajZtKcYRyFVrnmMcilL2dZDq90vpU+m3qT7UL6f1kLqHgMeAmwAkLWbASkutTCnGEchVa55jHIpS9nWQ6vdL6VMpQdsrg4j4GPBeWh3Ix497gNw+DFhpqZUnxTgCuWrNc4xDUcq+DlL9fil9KqWYss8gIm6JiKsi4lfjpt0bEbf1PjQbZinGEchVa55jHIpS9nWQ6vdL6VMpRZ2mM7PsUowjkKvWPMc4FKXs6yDV75fSp1IKJwMrUopxBHLVmucYh6KUfR2k+v1S+lRK0bPxDHrFpaXDJcU4ArlqzXOMQ1HKvg5S/X4pfSq9Nu3xDErjZGBm1r0U4xnYkCqhNjpFDN9Z+ws+sPJ2vrP2F32NI8V2Svid2GBy85hNqoTa6BQxvPJTN3DvhlYx3BWj93PEvIP49rtflj2OFNsp4Xdig8tXBraHEmqjU8TwnbW/2JUIdrpnw6+6ukIopX6/hN+JDTYnA9tDCbXRKWK4Zu2Grqb3Ko4U2ynhd2KDzcnA9lBCbXSKGF555LyupvcqjhTbKeF3YoPNycD2UEJtdIoYTjnyWRwx76Ddph0x7yBOOfJZWeNIsZ0Sfic22Fxaam2VUBudIobvrP0F16zdwCuPnNdVIkgdR4rtlPA7sWZyn4GZmbnPwMqWom6+lNp89wBYO004N9xnYH2Tom6+lNp89wBYO005N3xlYH2Rom6+lNp89wBYO006N5wMrC9S1M2XUpvvHgBrp0nnhpOB9UWKuvlSavPdA2DtNOnccDKwvkhRN19Kbb57AKydJp0bLi21vkpRN19Kbb57AKydEs6NTqWlriayvpp98P7T/p+j0zpSbCNFHDa8mnBu9Ow2kaQFkq6XtFbSXZLOnWSZl0naImlN9XNer+IxM7P2enllsAN4b0TcJmkmsFrStRGxdsJyN0XEqT2MY+DkuLWSS4pbPKXsSwqdhrXMYZCOp9XXs2QQEQ8CD1avt0q6GzgUmJgMrAs5GrVySdEwVsq+pHDe1Xdy2S337Xq/fOlCVpz2gqwxDNLxtO5kqSaStAh4EXDrJLOXSrpd0jclPS9HPE2Vo1ErlxQNY6XsSwpjG7bulggALrv5PsY2bM0WwyAdT+tez5OBpIOBK4F3RcSjE2bfBjwnIl4IfAa4us06zpY0Kml048aNvQ24YDkatXJJ0TBWyr6ksGb95q6m98IgHU/rXk+TgaQZtBLBlyLiqxPnR8SjEbGtev0NYIakOZMsd1FEjETEyNy5c3sZctFyNGrlkqJhrJR9SWHJglldTe+FQTqe1r1eVhMJuAS4OyI+2WaZZ1XLIeklVTybehVT0+Vo1MolRcNYKfuSwuJ5M1m+dOFu05YvXZj1S+RBOp7WvZ41nUk6HrgJuBPY+efGh4GFABHxeUnvAN5Gq/LoMeA9EfH9qdbrpjNXE+3NMk3haiLrFQ9uY2ZmHtxmEDVhoIy6xjZsZeXo+qxVM2a2Jz+OomEGqQ68hLp6M2vxlUGDDFIdeAl19Wb2FCeDBhmkOvAS6urN7ClOBg0ySHXgJdTVm9lTnAwaZJDqwEuoqzezp7i0tIEGqQ68hLp6s2HgwW0GUBMGyqhr8byZTgJmBfBtoi40qb6/KbE2Jc5cfDysX3xlUFOT6vubEmtT4szFx8P6yVcGNTSpvr8psTYlzlx8PKzfnAxqaFJ9f1NibUqcufh4WL85GdTQpPr+psTalDhz8fGwfnMyqKFJ9f1NibUpcebi42H95j6DLjSpvr8psTYlzlx8PKxX3GeQUJPq+5sSa1PizMXHw/rFt4nMakgx7oJ7CKxkvjIw6yDFuAvuIbDS+crAbAopxl1wD4E1gZOB2RRSjLvgHgJrAicDsymkGHfBPQTWBE4GZlNIMe6CewisCdxnYFZDinEX3ENg/eQ+A7MEUoy74B4CK5lvE5mZmZOBmZk5GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmRg+TgaQFkq6XtFbSXZLOnWQZSbpQ0pikOyQd3at4zMysvV5eGewA3hsRRwLHAm+XdOSEZV4NHF79nA18rofxDBUPpGJm3ejZ4ygi4kHgwer1Vkl3A4cCa8ctdhpwWbQekHSLpFmSDqn+re0lD6RiZt3K8p2BpEXAi4BbJ8w6FFg/7v391TTbSx5Ixcz2Rs+TgaSDgSuBd0XEo3u5jrMljUoa3bhxY9oAB4wHUjGzvdHTZCBpBq1E8KWI+OokizwALBj3fn41bTcRcVFEjETEyNy5c3sT7IDwQCpmtjd6WU0k4BLg7oj4ZJvFVgHLq6qiY4Et/r5gejyQipntjV6OZ3Ac8IfAnZLWVNM+DCwEiIjPA98Afg8YA34NvKmH8QyNZUsO5bjFczyQipnV1stqou8B6rBMAG/vVQzDzAOpmFk33IFsZmZOBmZm5mRgZmY4GZiZGU4GZmYGqFXQ0xySNgI/62MIc4CH+rj9bjQlVseZVlPihObEOghxPici2nbtNi4Z9Juk0YgY6XccdTQlVseZVlPihObEOgxx+jaRmZk5GZiZmZPB3rio3wF0oSmxOs60mhInNCfWgY/T3xmYmZmvDMzMzMlgSpL2lfQDSV+fZN5ZkjZKWlP9vKVPMf5U0p1VDKOTzJekCyWNSbpD0tH9iLOKpVOsL5O0ZdwxPa9Pcc6StFLSjyTdLWnphPlFHNMacZZyPI8YF8MaSY9KeteEZfp+TGvGWcoxfbekuyT9UNLlkg6YMH9/SVdUx/PWarTJKfXyEdaD4FzgbuDpbeZfERHvyBhPOydFRLva4lcDh1c//xH4XPXffpkqVoCbIuLUbNFM7q+Ab0XEGZL+HfC0CfNLOaad4oQCjmdE3AMsgdYfWLQGsLpqwmJ9P6Y144Q+H1NJhwLnAEdGxGOSvgKcCfzDuMXeDDwSEYslnQmcD7xuqvX6yqANSfOB1wAX9zuWaToNuCxabgFmSTqk30GVStIzgBNpDcxERPxbRGyesFjfj2nNOEt0CvD/ImJi42jfj+kE7eIsxX7AgZL2o/VHwM8nzD8NuLR6vRI4pRpwrC0ng/Y+DbwfeHKKZU6vLmlXSlowxXK9FMA1klZLOnuS+YcC68e9v7+a1g+dYgVYKul2Sd+U9LycwVUOAzYCf1/dIrxY0kETlinhmNaJE/p/PCc6E7h8kuklHNPx2sUJfT6mEfEA8JfAfcCDtEaIvGbCYruOZ0TsALYAs6dar5PBJCSdCvwyIlZPsdjXgEURcRRwLU9l4dyOj4ijaV1mv13SiX2Ko45Osd5Gq2X+hcBngKtzB0jrL66jgc9FxIuAXwEf7EMcndSJs4TjuUt1K2sZ8I/9jKOTDnH2/ZhKeiatv/wPA54NHCTpDdNdr5PB5I4Dlkn6KfBl4GRJXxy/QERsiojt1duLgWPyhrgrjgeq//6S1v3Nl0xY5AFg/FXL/Gpadp1ijYhHI2Jb9fobwAxJczKHeT9wf0TcWr1fSetDd7wSjmnHOAs5nuO9GrgtIjZMMq+EY7pT2zgLOaYvB9ZFxMaIeBz4KvC7E5bZdTyrW0nPADZNtVIng0lExIciYn5ELKJ1uXhdROyWeSfcz1xG64vmrCQdJGnmztfAK4EfTlhsFbC8qtY4ltYl5YOZQ60Vq6Rn7byvKekltM7PKU/g1CLiF8B6SUdUk04B1k5YrO/HtE6cJRzPCf6A9rde+n5Mx2kbZyHH9D7gWElPq2I5hT0/f1YBb6xen0HrM2zKpjJXE3VB0gpgNCJWAedIWgbsAB4GzupDSPOAq6pzcz/gf0fEtyT9d4CI+DzwDeD3gDHg18Cb+hBn3VjPAN4maQfwGHBmpxO4R94JfKm6XfAT4E2FHtNOcZZyPHf+AfAK4I/GTSvumNaIs+/HNCJulbSS1i2rHcAPgIsmfD5dAnxB0hitz6czO63XHchmZubbRGZm5mRgZmY4GZiZGU4GZmaGk4GZmeFkYANM0keqJzveUT1hMumDz9R6guUeT7St8e+eXZUGTjbvBkkj1esPj5u+SNLEHhKzZJwMbCCp9TjnU4Gjq0eGvJzdn33TNxHx84g4o8aiH+68iFkaTgY2qA4BHtr5yJCIeCgifg4g6RhJ360emPftnd3k1V/lf1VdRfyw6jBF0ksk3Vw9EO7747p+JyXpnyUdVb3+gapn3ktaIemt4//Kl3SgpC+rNR7BVcCB1fS/oPVUyjWSvlStel9J/6u62rlG0oGpD5oNLycDG1TXAAsk3SvpbyS9FEDSDFoPGDsjIo4B/g742Lh/97SIWAL8cTUP4EfACdUD4c4DPt5h2zcBJ6j1mOkdtJ51BXACcOOEZd8G/Doingv8KdUzriLig8BjEbEkIv5rtezhwGcj4nnAZuD0msfCrCM/jsIGUkRsk3QMrQ/gk4ArJH0QGAWeD1xbPRpjX1qPAd7p8urf3yjp6ZJmATOBSyUdTusx3DM6bP4mWoOPrAP+GXiFpKcBh0XEPdp91KkTgQurbd4h6Y4p1rsuItZUr1cDi6ZY1qwrTgY2sCLiCeAG4AZJd9J6cNdq4K6IWNrun03y/s+B6yPitdUH+Q0dNv2vwAit5wVdC8wB3lptezq2j3v9BNUtJbMUfJvIBpJa49kePm7SEuBnwD3A3OoLZiTN0O4DlLyumn48rSdnbqH1+N+dj1M+q9O2I+LfaH1Z/V+Am2ldKfwJe94iopr2+mqbzweOGjfv8eq2llnPORnYoDqY1q2dtdWtlyOBj1Yf1GcA587M6NcAAAB6SURBVEu6HVjD7s+C/42kHwCfpzWOLMAFwP+opte9mr6J1gBJj1Wv51f/nehzwMGS7gZWsPvVw0XAHeO+QDbrGT+11Kwi6QbgTyJitN+xmOXmKwMzM/OVgZmZ+crAzMxwMjAzM5wMzMwMJwMzM8PJwMzMcDIwMzPg/wPvVb51S+TLFAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot.scatter(x='Sepal width', y='Sepal length')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}